

Überprüfung der hydrologischen Grundlagen des Hochwasserschutzes in Buttisholz (Kt. LU)

Hochwasser vom 2. Juli 2013 beim Pflegeheim Buttisholz. Foto: Gemeinde Buttisholz

Auftraggeber: Verkehr und Infrastruktur des Kt. Luzern (vif) Abteilung Naturgefahren

Bericht 15 / 204

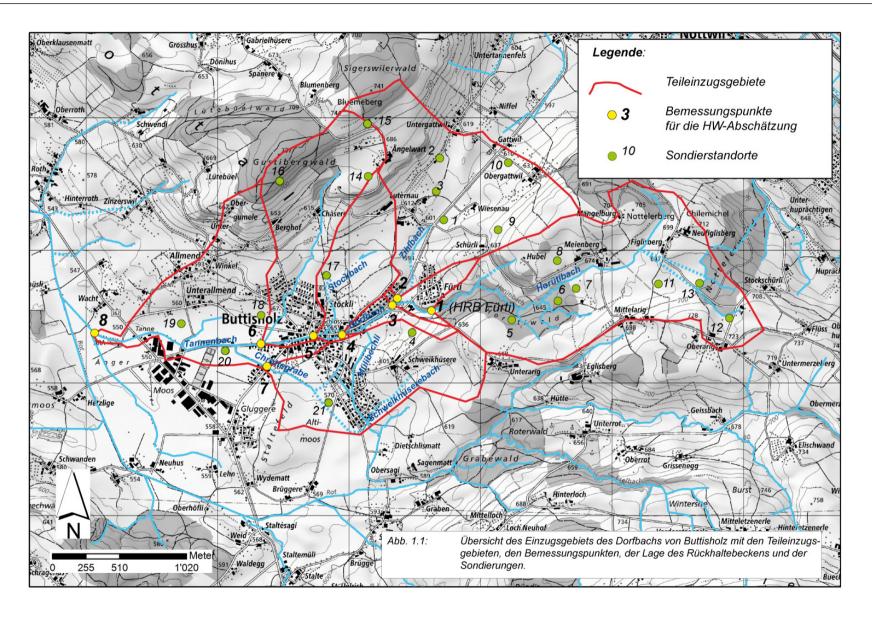
Reinach, Oktober 2015

Inhaltsverzeichnis

1 Einleitung	2
1.1 Problemstellung	2
1.2 Gebietskennwerte	5
1.3 Gewährsleute	5
2 Verwendete Daten und Unterlagen	6
3 Historische Hochwasser	8
3.1 Einleitung	8
3.2 Angaben zur Ausbaugeschichte des Dorfbachs	9
3.3 Historische Hochwasser am Dorfbach	9
3.4 Schlussfolgerungen	12
4 Beurteilung der Abflussreaktion des Gebiets	13
4.1 Einleitung	13
4.2 Geologie und Hydrogeologie	13
4.3 Böden	13
4.4 Abflussprozesse und Abflusstypen auf natürlichen (nicht überbauten) Flächen	14
4.5 Abflussreaktion der Siedlungsgebiete	14
4.6 Abflussreaktionskurven	15
5 Abflussberechnungen	20
5.1 Einleitung	20
5.2 Grundlagen und Aufbau des Modells QArea	20
5.3 Modellverifikation	22
5.4 Niederschlag-Szenarien	22
5.5 Abflussberechnungen	23
6 Hochwasserabflüsse definierter Jährlichkeit	25
6.1 Einleitung	25
6.2 Dorfbach beim Mülihof (BP4) ohne den Einfluss des bestehenden Rückhaltebec	
6.3 Der Einfluss des Hochwasserrückhaltebeckens Fürti auf die Abflussspitzen im I)orf26
6.4 Ausleitwassermenge in den Chottegrabe (BP4)	28
7 Anhang	29

1 Einleitung

1.1 Problemstellung


Der Dorfbach von Buttisholz hat ein Einzugsgebiet (EZG) von ca. 6.3 km². Buttisholz war in den vergangenen10 Jahren einige Male von Hochwasser durch den Dorfbach betroffen. Um den Hochwasserschutz zu verbessern, wurde 2011 in einem ersten Schritt am Horütibach das Hochwasserrückhaltebecken (HRB) Fürti (Rückhaltevolumen 28'800 m³, Drosselwassermenge 3 m³/s) erstellt (Abb. 1, BP1). Die Hochwasserabflüsse des Zihlbachs, der die Mulde von Gattwil entwässert, sind hingegen ungedämpft. Bis ausgangs Buttisholz fliessen noch weitere, teils eingedolte Bäche dem Dorfbach zu. Das System der Wasserläufe in Buttisholz und ihr Zusammenwirken ist daher komplex.

Nun soll mit einer gezielten Ausleitung des Dorfbachs in den Chottegraben der Dorfbereich bei Hochwasser entlastet werden (BP4, Höhe Gemeindehaus). Weitere Massnahmen am Dorfbach sind in mehreren Losen geplant. Diese wasserbaulichen Arbeiten sind aufwändig und bedürfen einer detaillierten hydrologischen Abklärung.

Die hydrologischen Grundlagen (Hochwasserabflüsse unterschiedlicher Jährlichkeit HQ₃₀, HQ₁₀₀, HQ₃₀₀) liegen von verschiedenen Quellen vor. Sie wurden teilweise mit HAKESCH oder mit einfachen, kaum kalibrierten Modellen abgeschätzt (Holinger, 2015; Emch & Berger et al., 2011). Es stellt sich die Frage, ob die für das Projekt festgelegten Ausbauwassermengen angemessen und in sich konsistent sind. Um diese Frage zu klären, will der Kanton Luzern die Bemessungsabflüsse überprüfen lassen.

Folgende Fragen sind dabei von Interesse:

- Wie stark reagieren die einzelnen Seitengewässer auf Starkregen?
- Wie vergleichen sich die in der Vergangenheit in Buttiholz beobachteten Hochwasser mit den vorhandenen HQ_x resp. mit den Bemessungsabflüssen?
- Wie wirkt sich das neu gebaute HRB Fürti auf die Abflüsse im Dorf aus?
- Sind die projektierten Ausleitungsabflüsse am Chottegraben sinnvoll?

1.2 Gebietskennwerte

Diese Kennwerte beziehen sich auf die in Abbildung 1.1 aufgeführten Teileinzugsgebiete.

Tab. 1.1: Gebietskennwerte

Höchster Punkt im Einzugsgebiet (EZG) (Bluemeberg)	744 m ü. M.
Tiefster Punkt im EZG (ARA)	547 m ü. M.
EZG oberhalb BP 1: HRB Fürti	1.90 km ²
EZG oberhalb BP 2: Zihl	1.30 km ²
EZG oberhalb BP 3: oberhalb Mülihof	3.33 km ²
EZG oberhalb BP 4: Mülifeld	3.43 km ²
EZG oberhalb BP 5: Dorfzentrum	3.91 km ²
EZG oberhalb BP 6: Underdorf	4.81 km ²
EZG oberhalb BP 7: Banschimatt	0.89 km ²
EZG oberhalb BP 8: ARA	6.66 km ²

1.3 Gewährsleute

Folgende Personen haben uns bei unseren Untersuchungen mit Informationen zu Hochwasser in Buttisholz unterstützt:

- Arnet Erwin, Wuhraufseher
- Bachofer Erwin, Alt-Gemeindeammann
- Emmenegger Josef, Anwohner (Mülihof)
- Erni Christina, Anwohnerin (Mülihof)
- Geisseler Markus, Feuerwehrkommandant
- Kiener Josef, Anwohner Arigstrasse
- · Korner Peter, ehem. Gemeinderat
- Paravicini Gianni, vif Kt. LU
- Schluh Michael, vif Kt. LU
- Schürmann Othmar, Alt-Feuerwehrkommandant
- Stadelmann Isidor, Alt-Gemeindeschreiber
- Stalder Roland, OekoB Planungsbüro

2 Verwendete Daten und Unterlagen

- Emch & Berger / WSB (2011): Hochwasserrückhaltebecken Fürti. Technischer Bericht Hydrologie. Auftraggeber: vif Kt. LU.
- Feuerwehr Buttisholz (2014) Einsatzliste. http://www.buttisholz.ch/feuerwehr/einsatz.htm (abgerufen im September 2015).
- Gemeinde Buttisholz (1986): 950 Jahre Buttisholz, Jubiläumsschrift.
- Gemeinde Buttisholz (2015): Gemeinderatsnachrichten http://www.buttisholz.ch/verwaltung/news-detail.htm (abgerufen im September 2015).
- Gemeinde Buttisholz: Fotos zu den Hochwassern 2003, 2005, 2007, 2010, 2013, 2014.
- Gerber M.E. (1994): Geologischer Atlas der Schweiz, Blatt 1129 Sursee. Hrsg. Landeshydrologie und -geologie.
- Holinger AG (2015): HWS Buttisholz HWRB Fürti. Memo zu Handen des vif des Kt. LU vom 23.4.2015.
- Jäckli H., Kempf Th. (1972): Hydrogeologische Karte des Schweiz 1 : 100'000. Blatt Bözberg Beromünster. Hrsg. Schweiz. Geotechnische Kommission.
- Kanton Luzern (2015a): Ereigniskatasterauszüge mit StorMe Formularen.
- Kanton Luzern (2015b): Online-Karten, Gewässerschutzkarte, Waldbestandeskarte http://www.geo.lu.ch/map/ (abgerufen im September 2015).
- Kanton Luzern (201 5c): Niederschlagsdaten von verschiedenen Stationen.
- Kanton Luzern, Bau- und Verkehrsdepartement (2001): Verbauung der Wigger und Zuflüsse. 10069 Ausbau Dorfbach (Buttisholz). Auflageprojekt. Proj.-Verfasser: Weilenmann + Blättler AG.
- Lanz-Stauffer, H. und C. Rommel (1936): Elementarschäden und Versicherung. Studie des Rückversicherungsverbandes kantonal-schweizerischer Feuerversicherungsanstalten zur Förderung der Elementarschadenversicherung, Band 2. Selbstverlag des Rückversicherungsverbandes. Bern.
- MeteoSchweiz: Niederschlagsdaten verschiedener Starkregenereignisse. Witterungsberichte und Annalen, diverse Jahre.
- Naef F., Scherrer S., Zurbrügg C. (1999): Grosse Hochwasser unterschiedliche Reaktion von Einzugsgebieten auf Starkregen. Hydrologischer Atlas der Schweiz, Blatt 5.7.
- OekoB (2002): Hochwassergefahren Dorf Buttisholz Gefahren- und Risikobeurteilung. Auftraggeber: Verkehr und Infrastruktur des Kt. LU, vif.
- OekoB (2005): Ereignisdokumentation Starkniederschläge 23. August 2005 in Buttisholz. Auftraggeber: Bau-, Umwelt- und Wirtschaftsdepartement.
- OekoB (2007): Ereignisdokumentation Starkniederschläge 8./9. August 2007 in Buttisholz. Auftraggeber: Bau-, Umwelt- und Wirtschaftsdepartement.
- OekoB (2010): Ereignisdokumentation Starkniederschläge 29. Juli 2010 in Buttisholz. Auftraggeber: Verkehr und Infrastruktur vif, Kt. LU.
- Oeko-B, GEOTEST AG, PlanQuadrat AG (2009): Gefahrenkarte Buttisholz. Bericht und Anhang. Auftraggeber: Kt. LU, Bau und Umweltdepartement.
- Planquadrat AG (2013): Hochwasserschutz Buttisholz Dorf, Objekt Dorfbach (Übersicht Lose 1 bis 4). Im Auftrag des vif, Kanton Luzern.
- Röthlisberger G. (1991): Chronik der Unwetterschäden in der Schweiz. Berichte WSL, Berichtnummer 330.
- Scherrer AG (2004): Bestimmungsschlüssel zur Identifikation von hochwasserrelevanten Flächen. Im Auftrag des Landesamtes für Wasserwirtschaft Rheinland-Pfalz.

- Scherrer AG (2015): Hydrologische Grundlagen für den Götzentalbach in Dierikon (Kt. LU) unter Berücksichtigung des Hochwassers vom 7. Juni 2015. Auftraggeber vif Kt. LU.
- Scherrer S. (1997): Abflussbildung bei Starkniederschlägen Identifikation von Abflussprozessen mittels künstlicher Niederschläge. In: Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Nr. 147.
- WSL, Forschungsanstalt für Wald, Schnee und Landschaft (2014): Ereignisdokumentation Hochwasserschäden in der Gemeinde Buttisholz (1972-2014).
- Zeitungen, verschiedene.
- Zeller J., Geiger H., Röthlisberger G. (1978): Starkniederschläge des schweizerischen Alpen- und Alpenrandgebietes, Bd. 3, Hrsg. von der Eidg. Anstalt für das forstliche Versuchswesen.

3 Historische Hochwasser

3.1 Einleitung

Es liegen keine Abflussmessungen am Dorfbach Buttisholz vor. Mit der Untersuchung historischer Hochwasser können aber Hinweise über Häufigkeit, Grösse und Verlauf von Hochwasserereignissen gesammelt werden. Durch Informationen aus Zeitungen, Archiven und verbürgten Angaben kann die Hochwassergeschichte der letzten Jahrzehnte zusammengetragen werden. Die Hochwasser der letzten 15 Jahre sind aufgrund von Zeugenaussagen und Fotos gut belegt. Anhand der Aussagen und Fotos wurde versucht, die Abflussspitzen jener Hochwasser zu rekonstruieren. Dies erlaubte, alle beobachteten Hochwasser einzuordnen.

Buttisholz liegt am Rande des glazial überformten Tales der Rot. Teile des Siedlungsgebiets liegen am Unterhang der angrenzenden Hügel, andere Gebiete wie das Hinderdorf, Underdorf und Dorf befinden sich in einer flachen Mulde. Zihlbach, Horütibach, Dorfbach und Stockbach fliessen aus verschiedenen Richtungen nach Buttisholz. Wenn bei Hochwasser diese Bäche über die Ufer gehen, verteilt sich das Wasser aufgrund der Topographie in grossen Teilen des Dorfes (vgl. StorMe-Formulare). Mit dem Bau des Dammes und des Objektschutzes oberhalb Mülifeld haben sich die Abflussverhältnisse bei Hochwasser verändert. Dies erschwerte die Rekonstruktion der Abflussspitzen.

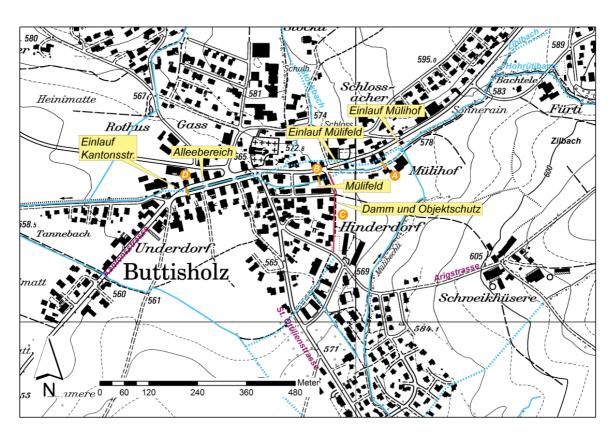


Abb. 3.1: Im Zusammenhang mit historischen Hochwassern wesentliche Stellen im Dorf Buttisholz: A-D markieren Abschätzpunkte der Abflussspitze oder der Abflusskapazität.

3.2 Angaben zur Ausbaugeschichte des Dorfbachs

Um historische Hochwasser vergleichen zu können, ist die Kenntnis der früheren Gerinnegeometrie eines Baches erforderlich. Die Ausbaugeschichte des Dorfbachs wurde mangels verfügbarer Unterlagen weitgehend aus alten Landeskarten rekonstruiert.

Bereits auf der Siegfriedkarte von 1889 ist der heute noch bestehenden Alleebereich im Dorf sichtbar (Abb. 3.1). Oberhalb davon, zwischen Mülihof und Dorf, verlief damals der Bach offen und es bestanden erst wenige Gebäude entlang des Baches. Bis in die 1950er-Jahre nahm die Bebauung in diesem Abschnitt geringfügig zu. Die Landeskarte 1955 zeigt, dass der heutige Mülihof und die unterhalb liegenden Gebäude noch nicht existierten. Der Dorfbach war aber auf zwei Abschnitten in jenem Bereich bereits eingedolt. In den 1960er-Jahren wurde im Mülifeld ein Gebäude erstellt, welches noch heute auf dem Gerinne des Dorfbachs steht. Seitdem hat der Dorfbach zwischen Mülihof und Dorf das ähnliche Aussehen und besteht im eingedolten Abschnitt aus einem Rohr (d = 1 m). Dieser Abschnitt ist auch der Engpass mit einer Abflusskapazität von ca. 3.5 m³/s (Kanton Luzern, Bau- und Verkehrsdepartement, 2001). Unterhalb davon bis zum Alleebereich verläuft der Bach in einem zwar schmalen, dafür tiefen gemauerten Gerinne mit einer höheren Kapazität.

Im Jahr 2002 wurden der Bach im Alleebereich saniert und einzelne Brücken neu erstellt. Da verschiedene Hochwasser grosse Schäden anrichteten, wurde kurz vor dem Hochwasser im August 2005 oberhalb Mülifeld ein kleiner Querdamm geschüttet und mit einer Objektschutzmauer bis zur Arigstrasse erweitert, sodass der Dorfbach bei Hochwasser das Quartier Mülifeld kaum mehr überfluten kann. Seitdem kann oberhalb Mülifeld austretendes Wasser entlang des Dammes zur Arigstrasse und von dort mit Beaverschläuchen bis zur St. Ottilienstrasse geleitet werden. Von dort wird es aus dem bebauten Bereich hinaus über die Felder zum Underdorf geleitet. Damit können grosse Schäden vermieden werden.

Im Jahr 2011 wurde das Hochwasserrückhaltebecken Fürti in Betrieb genommen. Der Auslauf des Beckens war zuerst mit einer Öffnung vom 70 x 35 cm ausgestaltet (Drosselwassermenge 3 m³/s), diese wurde im Frühjahr 2015 auf 30 x 30 cm (Drosselwassermenge 1 m³/s) verkleinert¹. Bis zum Abschluss der diversen geplanten Hochwasserschutzmassnahmen sollen durch die Verkleinerung des Auslasses die Abflussspitzen des Hohrütibachs stärker gedämpft werden. Die Abflussspitzen des anderen Gewässerarmes, dem Zihlbach, gelangen ungedämpft in den Dorfbach.

3.3 Historische Hochwasser am Dorfbach

3.3.1 Überblick

Im Anhang 1 sind die recht ergiebigen Informationen über historische Hochwasser detailliert zusammengestellt. Ein wesentlicher Hinweis auf mögliche Hochwasser liefern Niederschlagsmessungen. Grosse Ereignisse sind im Anhang 2 zusammengestellt und ihre räumliche Verteilung ist im Anhang 3 dargestellt.

Erstmals wird Buttisholz am 17.8.1917 im Zusammenhang mit Erdschlipfen erwähnt ohne Angaben zu Hochwasser.

Hinderdorf, Dorfkern und Underdorf wurden am **29.5.1935** überflutet. Bei diesem Ereignis sollen grosse Wassermassen mit zügiger Strömung beobachtet worden sein.

¹ Es gibt eine zweite, höher liegende Öffnung (ebenfalls 30 x 30 cm), die als Kleintierdurchlass dient und bei Volleinstau eine Drosselwassermenge von ca. 0.7 m³/s aufweist.

Am **29./30.8.1975** brach der Dorfbach aus und führte im Mülifeld zur Überflutung. Unterhalb blieb der Dorfbach knapp im Gerinne. Die Keller im Dorf wurden knapp nicht überflutet. Das Wasser floss unterhalb des Dorfes auf der Hauptstrasse.

1980 brach der Dorfbach wahrscheinlich zwei Mal am unteren Ende der Allee aus. Am 20.6.1986 waren Seitenbäche von Hochwasser betroffen. Inwieweit der Dorfbach auch Hochwasser führte, ist unbekannt. Im gleichen Jahr waren am 25.12.1986 die Bäche randvoll.

Erst einige Jahre später löste ein Gewitter am Abend des **7.6.2003** Hochwasser aus, so dass der Horütibach über die Ufer trat. Dabei wurde Holz vom Bach mitgetragen und der Einlauf beim Mülihof wurde zumindest teilweise verstopft, wie Bilder belegen. Weiter unten wurden die Dorfteile Mülifeld, Hinderdorf, Arigstrasse und Dorf bis hin ins Underdorf stark überschwemmt und es entstanden grosse Schäden. Auch die Allee von Buttisholz verwandelte sich in einen Fluss.

Die ergiebigen Niederschläge vom 19.-22.8.2005 führten in der Zentralschweiz und im Berner Oberland zu grossen Hochwassern. Auch in der Umgebung von Buttisholz fielen in 3 Tagen 125 mm Niederschlag und am **21.8.2005** erreichte das Hochwasser seine Spitze. Weite Gebiete waren überschwemmt, so der Dorfkern, Hinderdorf, Underdorf, Schloss, Seebaldmatt, Wydenmatt, etc. Dank dem geschütteten Damm oberhalb der Mülimatt wurde jenes Quartier verschont und das Wasser floss via Arigstrasse an Teilen des Dorfs vorbei.

Im nahe gelegenen Sempach fielen am **7./8.8.2007** über 120 mm Niederschlag. Im Kanton Luzern traten Bäche und Flüsse über die Ufer so auch in Buttisholz. Die riesigen Wassermassen konnten mittels Beaver-Schläuche über die Arigstrasse und unterhalb der St. Ottilienstrasse auf die Wiese geleitet werden. Das Wasser staute sich z.T. auch im Unterlauf des Dorfbachs im Gewerbegebiet und überschwemmte mehrere Betriebe.

Am **29./28.7.2010** fielen in Sempach 89 mm Niederschlag. In Buttisholz überschwemmte in der Folge der Dorfbach das Zentrum, woraufhin die Strasse für zwei Stunden gesperrt werden musste. Zudem musste Wasser über die Arigstrasse abgeleitet werden.

Am 13.7.2011 erzeugte ein Gewitter lokale Überschwemmungen in der St. Ottilienstrasse.

Am frühen Abend des **2.7.2013** zog ein Gewitter mit starkem Hagel über Buttisholz und löste ein Hochwasser aus. Das Unwetter war von kurzer Dauer. Neben den Gerinneüberlastungen floss auch noch Hang- und Oberflächenwasser direkt ins Siedlungsgebiet. Die grossen Mengen von Hagelkörnern verursachten zudem an vielen Stellen Verstopfungen von Schächten, Durchlässen und Rechen. Beim Einlauf der Zihl gab es Rückstau, das Mülibechli ging über die Ufer und das Wasser des Dorfbachs floss wiederum zum Teil dem Erddamm entlang in die Arigstrasse.

3.3.2 Grösse der historischen Hochwasser und deren Einordnung

Mit Hilfe der Beobachtungen der Gewährspersonen und von Fotos seit dem 2003-Hochwasser liess sich die Grösse einiger Hochwasser an dafür günstigen Stellen abschätzen. An keiner Stelle konnte der gesamte Abfluss geschätzt werden. Durch die Addition der beobachteten Abflüsse (Annahme: Rohr im Mülifeld ist voll gelaufen und beobachtete Abflüsse zwischen Mülifeld und Arigstrasse / Ottilienstrasse) ergibt sich der gesamte Abfluss oberhalb Mülifeld (Tabelle 3.1).

Tab. 3.1: Die Abschätzungen der Abflussspitzen verschiedener Hochwasser an verschiedenen Stellen.

Datum	Spitze Ober- flächenabfluss beim Mülihof (ohne Eindo- lung) (A)	Kapazität Dorf- bach im Bereich Mülifeld (B)	Abflussspitze des ausgetretenen Dorfbachs (Mü- lihof Richtung Arigstrasse (Hin- derdorf) (C)	Gesamter Ab- fluss des Dorf- bachs (A + B resp. A + C)	Abflussspitze Dorfbach bei der Kantonsstrasse (D)
	[m³/s]	[m³/s]	[m ³ /s]	[m³/s]	[m ³ /s]
7.6.200 3	1.0 – 2.2	3.5	?	4.5 – 5.7	?
21.8.20 05	?	3.5	0.2 – 0.6	3.7 – 4.1	4.0
8.8.200 7	0.8 – 1.2	3.5	1.2 – 2.0	4.7 – 5.5	?
29.7.20 10	0.15 – 0.2	3.5	0.05 - 0.1	3.65 – 3.7	?
2.7.201 3	1.5 – 2.0	3.5	1.5 – 2.0	5.0 – 5.5	4.5

Die gesamten Abflüsse des Dorfbachs oberhalb Mülifeld lagen bei den fünf betrachteten Hochwassern zwischen 3.6 und 5.7 m³/s. Die Hochwasser 2003, 2007 und 2013 dürften die grössten gewesen sein, 2005 und 2010 waren kleiner. Aufgrund der Schilderungen waren die Hochwasser von 1935 und 1975 in ähnlicher Grössenordnung wie 2003, 2007 und 2013. Sehr grosse Hochwasser mit Abflüssen > 6 m³/s waren in den letzten 80 bis 100 Jahren wahrscheinlich nicht aufgetreten.

Die Kriterien, die für die Einordnung der im Anhang 1 aufgeführten Hochwasser dienten, sind in der Tabelle 3.2 aufgelistet:

Tab. 3.2: Kriterien zur Einstufung der Hochwasser oberhalb Mülifeld.

	Tarterion Lat Linetarang do Troom door Toom and Train Train				
	Dorfbach	Beschreibung			
klein	< 3 m ³ /s	Hochwasser am Dorfbach oder Seitenbächen erwähnt, keine oder nur leichte Überschwemmungen			
mittel	3 – 4.5 m ³ /s	Lokale Überschwemmungen, kleinere Sachschäden			
gross	4.5 - 6 m ³ /s	Überschwemmungen mit grossen Sachschäden			
sehr gross	> 6 m ³ /s	grosse Überschwemmungen und Sachschäden			

Abbildung 3.2 zeigt die zusammengetragenen Hochwasser seit 1917 am Dorfbach in Buttisholz mit der Einschätzung nach ihrer Grösse. Fünf grosse Hochwasser ereigneten sich in dieser Zeitspanne (1935, 1975, 2003, 2007, 2013) und richteten grossen Sachschaden an. Sehr grosse oder katastrophalen Hochwasser mit schwerwiegenden Folgen sind in den letzten 80 - 100 Jahren keine bekannt, hingegen etliche mittlere und kleinere Hochwasser. Seit den 1970-Jahren traten mehr Hochwasser auf als in der Periode vorher.

Die Hochwasser von 1975, 2003, 2007 und 2013 waren zusammen mit demjenigen von 1935 die fünf grössten Ereignisse der letzten ca. 80 Jahre. Ihre Wiederkehrperiode liegt demnach bei 16 bis 80 Jahren.

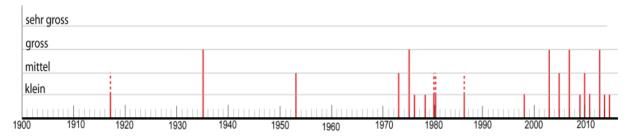


Abb. 3.2: Historische Hochwasser am Dorfbach Buttisholz seit 1917. Charakterisierung der Grösse der einzelnen Hochwasser anhand der Schilderungen der untersuchten Quellen und der Fotos.

3.4 Schlussfolgerungen

Aus den Erkundungen historischer Hochwasser lassen sich folgende Schlüsse ziehen:

- Durch die Recherchen über historische Hochwasser eröffnet sich ein Beobachtungszeitraum von 80 100 Jahren.
- Sowohl Gewitter als auch Landregen erzeugten in Buttisholz verschiedene Hochwasser mit Überschwemmungen.
- Sehr grosse Ereignisse sind keine aufgetreten dafür fünf grosse Hochwasser in der Grösse von 3.6 5.7 m³/s.
- Die Hochwasser von 1975, 2003, 2007 und 2013 waren zusammen mit demjenigen von 1935 die grössten fünf Ereignisse der letzten ca. 80 Jahre. Ihre Wiederkehrperiode liegt bei 16 bis 80 Jahren.

4 Beurteilung der Abflussreaktion des Gebiets

4.1 Einleitung

Wie viel Wasser bei Starkregen in den Boden eindringt und vorübergehend zurückgehalten wird und wie viel Wasser sofort abfliesst, hängt von der Gebietsausstattung ab (Geomorphologie, Geologie, Böden, Vegetation, Landnutzung). Welche Abflussprozesse bei Starkregen ablaufen, wurde detailliert mittels Beregnungsversuchen untersucht (Scherrer, 1997; Naef et al., 1999). Darauf aufbauend wurde ein Bestimmungsschlüssel entwickelt, der die Identifikation hochwasserrelevanter Flächen erlaubt (Scherrer AG, 2004). Die Beurteilung des EZG des Inerdorfbachs nach der Abflussbereitschaft lehnt sich eng an diesen Bestimmungsschlüssel an.

4.2 Geologie und Hydrogeologie

Die geologische und hydrogeologischen Grundlagen stammen aus Gerber (1994), Jäckli & Kempf (1972) und Kanton Luzern (2015b).

Der Dorfbach Buttisholz entwässert die Einzugsgebiete aus dem Graben des Horütibachs im Südosten und dem Zihlbach (Sattel zwischen Buttisholz und Nottwil und dem Hügel des Bluemebergs / Gustibergwald). Die Hügel sind aus der Oberen Süsswassermolasse (OSM) aufgebaut. Sie besteht aus grauen Feinsandsteinen im Wechsel mit bunten Mergeln. Aufgeschlossen ist die Molasse selten, so in Bachgräben (Hohrütibach) und an einzelnen Geländekanten. Ansonsten ist die Molasse von unterschiedlich mächtigen Moränenschicht überdeckt. Reste von Moränenwällen lassen sich im EZG vielerorts ausmachen.

In flacheren Muldenlagen lagen früher Sumpfflächen (z. B. Luternau- Fürti, Obergattwil, Figlisberg). Buttisholz liegt selber in einer Mulde auf Schwemmfächern des Dorfbachs und von Seitenbächen. Unterhalb Buttisholz bis zur Mündung des Dorfbachs in die Rot liegen sog. Rückzugsschotter, die beim Rückzug der Gletscher vermutlich an den Gletscherrändern abgelagert wurden. Laut hydrogeologischer Karte (Jäckli & Kempf, 1972), aber auch gemäss der kantonalen Gewässerschutzkarte (Kt. LU, 2015b) führen diese Rückzugsschotter Grundwasser. An wenigen anderen Stellen im EZG gibt es auch Grundwasservorkommen so bei Fürti und im und unterhalb des Fürtiwaldes. Das EZG zeichnet sich durch seinen Reichtum an gefassten Quellen aus. Niederschlagswasser, das in die Moräne infiltriert, dringt in die OSM, wo das Wasser von weniger durchlässigen Schichten gestaut wird und zu Tage tritt.

4.3 Böden

In diesem Bereich gibt es keine Bodenkarte, die über die Beschaffenheit der Böden Auskunft geben würde. Um Informationen über den Aufbau der Böden zu erhalten, wurden 21 Sondierungen (B1 – B21) mit der Schlagsonde nach Pürckhauer (Kerndurchmesser 2 cm) abgeteuft. Die Lage der Sondierungen ist in Abbildung 1.1 eingetragen und die Profile sind im Anhang 8.2 a-d dargestellt und im Anhang 8.1 kurz beschrieben. Diese Profile wurden nach Infiltration, Speichervermögen und zu erwartendem Abflussprozess beurteilt und bilden die Grundlage für die Kartierung des Gebiets nach der Abflussbereitschaft. Aufgrund der geologischen und hydrogeologischen Karte, der Sondierungen und der waldsoziologischen Karte (Kt. LU, 2015b)) ergab sich ein Bild über die räumliche Verteilung und Eigenschaften der Böden im EZG.

In den Hängen mit OSM- und Moräne-Untergrund sind meist sandige Braunerden entstanden (B2, B4, B8, B9, B15, B16, B17, B18). Auf hartem Sandstein können diese Böden auch flach-

gründiger sein (B15). Oft weist auch der Unterboden von Braunerdeböden Rostfleckung auf. Die Ursache für die Rostfärbung war nicht überall zu klären, machten doch weder die Moräne noch die Sandsteine der OSM einen stauenden Eindruck.

Die Waldsoziologische Karte zeigt im Hohrütiwald Waldgesellschaften mit Esche oder sogar Erle. An diesen Stellen wurden Buntgleye (B5) oder Brauerde-Gleye (B6) angetroffen. Ebenfalls in Muldenlagen im Freiland wurden unterschiedlich stark vergleyte Böden (B1, B3, B7, B10, B11, B12, B13, B14, B19, B20, B21) wie Gleye oder Übergangsformen (Braunerde-Pseudogleye, Braunerde-Gleye) erfasst.

Die Böden im EZG des Dorfbachs von Buttisholz sind aufgrund des hohen Sandgehalts normal durchlässig und weisen meist ein hohes Speichervermögen auf. In einigen Muldenlagen sind die Böden markant von Stauwasser geprägt oder gar von Grundwasser beeinflusst. Dies wirkt sich auf die Infiltration und die Grösse ihres Speichervermögens aus.

4.4 Abflussprozesse und Abflusstypen auf natürlichen (nicht überbauten) Flächen

Die Beurteilung der natürlichen Flächen stützt sich im Wesentlichen auf die geologische Karte und vor allem auf die Bodensondierungen. Gemäss den in Tabelle 4.1 aufgeführten Kriterien wurden Prozesse, welche einen ähnlich starken Beitrag zur Entstehung von Hochwasser leisten, kartiert und zu sog. Abflusstypen zusammengefasst (Abb. 4.1). Diese dienen als Grundlage für die Abflussberechnungen mit dem Niederschlag-Abfluss-Modell QArea.

Nassflächen werden rasch gesättigt (Prozess: Oberflächenabfluss aufgrund rasch sich sättigender Flächen, SOF1) und tragen wie undurchlässige Flächen (Oberflächenabfluss aufgrund Infiltrationshemmnissen, HOF1, 2) rasch zum Abfluss bei. Solche Flächen sind im EZG keine vorhanden (Abflusstyp 1: 0 % Flächenanteil).

Feuchte Mulden und die unteren Teile langer Hänge weisen in Bachnähe ein geringes Feuchtedefizit auf und sättigen sich bei Starkregen (verzögerter Oberflächenabfluss aufgrund der Sättigung: SOF2). Drainierte Flächen an Hängen lösen raschen Abfluss im Boden aus (SSF1). Diese Flächen tragen leicht verzögert zur Entstehung von Hochwasser bei (Abflusstyp 2, 5.8 %).

Mässig tiefgründige Böden mit mässiger bis guter Durchlässigkeit werden gesättigt und es bildet sich verzögerter Oberflächenabfluss (SOF2 - 3). Auf flachgründigen Böden an bewaldeten Hängen, in stau- oder hangwasserbeeinflussten Böden entsteht verzögerter Abfluss im Boden (SSF2). Gesättigte oder nahezu gesättigte Böden in flacher Lage reagieren mangels Geländeneigung nur langsam. Sie alle gehören dem Abflusstyp 3 an (26.9 %).

Ein Grossteil der Böden im EZG des Buttiswiler Dorfbachs sind gut durchlässig und auch speicherfähig. Bei Starkregen werden sie erst nach sehr ergiebigen Niederschlägen gesättigt (Oberflächenabfluss aufgrund sich langsam sättigender Flächen, SOF3; stark verzögerter Abfluss im Boden SSF3). Solche Flächen tragen daher stark verzögert und nur mässig zum Hochwasser bei (Abflusstyp 4, 58.5 %). Im günstigen Fall sickert das Niederschlagswasser in den durchlässigen Untergrund (Tiefensickerung, DP, Abflusstyp 5, 0.0 %). Solche Flächen sind im EZG keine vorhanden.

4.5 Abflussreaktion der Siedlungsgebiete

Die überbauten Flächen im EZG mit 25.4% wurden nach ihrer Hochwasserrelevanz gesondert kartiert. Die Beurteilung basiert auf den Erfahrungen der Glattstudie (IHW / Scherrer AG, 2002; Naef et al., 2004). Wichtige Kriterien waren dabei die Bebauungsdichte und die Geländeneigung. Die Siedlungsflächen wurden in drei verschiedene Abflusstypen mit unterschiedli-

cher Abflussreaktion unterteilt (Tab. 4.2), welche ebenfalls als Grundlage für die Abflussberechnungen mit dem Niederschlag-Abfluss-Modell QArea dienen.

Die Abflusstypen 1-3 und die Siedlungstypen machen insgesamt 41.5% des EZG aus. Die Abflussreaktion des Dorfbachs Buttisholz wird daher als mässig beurteilt. Ein wesentlicher Grund dafür sind die speicherfähigen und recht gut durchlässigen Böden im EZG.

4.6 Abflussreaktionskurven

Abbildungen 4.2 und 4.3 zeigen die Abflussreaktionskurven für natürliche Flächen und Siedlungsgebiete. Auf der Grundlage von Beregnungsversuchen (Scherrer, 1997) wurden den fünf Abflusstypen der natürlichen Flächen je eine Abflussreaktionskurve zugeordnet. Die Kurven beschreiben den Anteil des abfliessenden Niederschlags in Abhängigkeit der Niederschlagsmenge. Eingetragen sind die Spitzen- und die Volumenabflusskoeffizienten. Letztere zeigen, dass von den flächenmässig dominierenden Abflusstypen 3 und 4 der natürlichen Flächen (26.9 % resp. 58.5 % des EZG) bei einem Niederschlag von 100 mm rund 30 % resp. 10 % abfliesst.

Für die Herleitung von Abflussreaktionskurven für natürliche Flächen besteht eine grosse Erfahrung aus zahlreichen Studien. Vergleichbare Erfahrungen für besiedelte Flächen existieren hingegen weniger. Die Abflussreaktionskurven der Siedlungsgebiete beruhen im Wesentlichen auf Erkenntnissen, die im Rahmen der Glattstudie gewonnen wurden (IHW / Scherrer AG, 2002). Demnach fliessen vom Siedlungs-Abflusstyp S1 (1.8 % des EZG) bei einem Niederschlag von 100 mm rund 85 % ab, bei S2 (2.6 % des EZG) 42 % und S3 (4.4 % des EZG) 20 %.

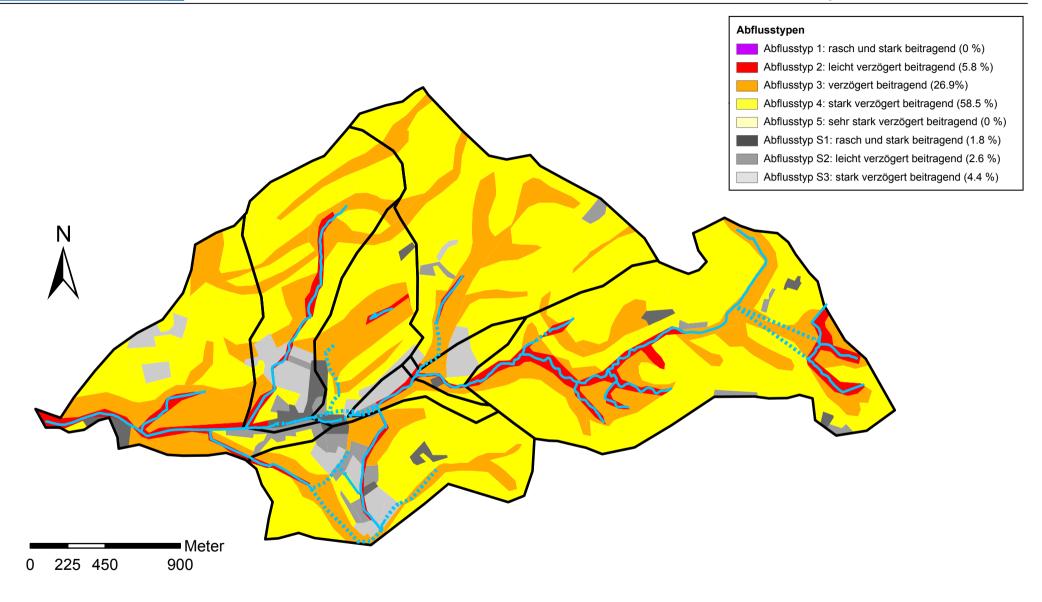
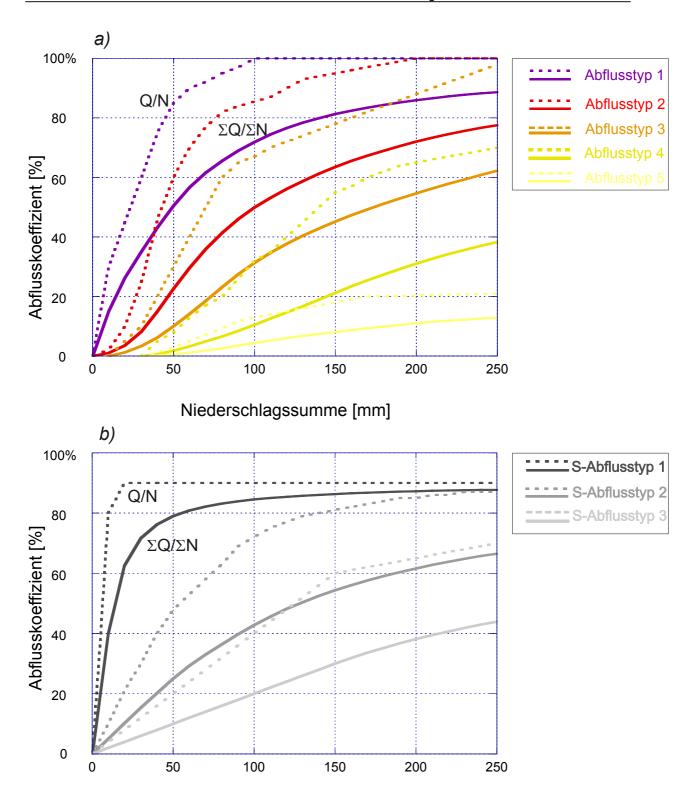


Abb. 4.1: Flächen ähnlicher Abflussbereitschaft (Abflusstypen) im Einzugsgebiet des Dorfbachs Buttisholz.


Tab. 4.1: Dominante Abflussprozesse, Gebietseigenschaften und Abflusstypen im EZG des Dorfbachs Buttisholz.

Abfluss- typ	Abflussreaktion	Dominante Abflussprozesse	Massgebende Gebietseigenschaften	Flächer am EZC	
				(km ²)	(%)
	Rasch und stark bei- tragende Flächen	Oberflächenabfluss aufgrund von Infiltrationshemmnissen (HOF1)	Schwach durchlässige Böden mit Gefälle, verrutschte Gerinneflanken.	0.00	0.0
		Sofortiger gesättigter Oberflächenabfluss (SOF1)			
2	Leicht verzögert bei- tragende Flächen	fluss aufgrund von Infiltrations- hemmnissen (HOF2)	Schwach durchlässige Böden mit geringem Gefälle.	0.39	5.8
		Leicht verzögerter Oberflächenab- fluss aufgrund sich langsam sätti- gender Flächen (SOF2)	Vernässte Böden im Bereich von Quellmulden, Moore an geneigter Lage.		
		Rascher Abfluss im Boden (SSF1)	Flachgründige, gut durchlässige Böden mit lateralen Fliesswegen über schwach durchlässigem Fels mit grossem Gefälle, drainierte Flächen in Hanglage.		
	Verzögert beitragen- de Flächen	Verzögerter Oberflächenabfluss aufgrund sehr langsam sich sätti- gender Böden (SOF2 - SOF3)	Mässig tiefgründige Böden mit mässiger bis guter Durchlässigkeit, locker be- baute Siedlungsflächen. Nasse Flächen in ebener Lage.	1.79	26.9
		Verzögerter Abfluss im Boden (SSF2)	Mässig tiefgründige, gut durchlässige Böden mit lateralen Fliesswegen über Fels oder Moräne, Flächen in Gerinnenähe, drainierte Böden in flacher Lage.		
	Stark verzögert bei- tragende Flächen	Sehr stark verzögerter Oberflä- chenabfluss aufgrund sehr langsam sich sättigender Böden (SOF3)	Tiefgründige Böden mit guter Durchlässigkeit.	3.89	58.5
		Stark verzögerter Abfluss im Boden (SSF3)	Tiefgründige, gut durchlässige Böden mit lateralen Fliesswegen.		
	Sehr stark verzögert beitragende Flächen	Tiefensickerung (DP)	Tiefgründige gut durchlässige Böden oder flachgründige, gut durchlässige Böden auf durchlässiger Geologie (Moräne, Schotter).	0.00	0.0
		Sehr stark verzögerter Abfluss im Boden (SSF3)	Tiefgründige, gut durchlässige Böden mit lateralen Fliesswegen, gerinnefern.		
Total				6.07	91.2

Tab. 4.2: Klassierung der Siedlungsflächen nach Abflusstypen.

Ab- fluss- typ	Abflussre- aktion	Massgebende Gebietseigenschaften	Fläche	nanteil
			(km^2)	(%)
S1	rasch und stark beitra- gend	sehr dicht bebaute Flächen leicht geneigte, dicht bebaute Flächen stark geneigte, mässig dicht bebaute Flächen	0.12	1.8
S2	leicht verzö- gert beitra- gend	ebene, dicht bebaute Flächen leicht geneigte, mässig dicht bebaute Flä- chen geneigte, locker bebaute Flächen	0.17	2.6
S3	verzögert beitragend	geneigte, locker bebaute Flächen leicht geneigte, mässig dicht bebaute Flä- chen	0.29	4.4
Total			0.59	8.8

Niederschlagssumme [mm]

Abb. 4.2: Die Abflussreaktionskurven für natürliche Flächen (Abb. 4.2a) und für Siedlungsflächen (Abb. 4.2b). Sie definieren den Anteil des abfliessenden Niederschlags in Abhängigkeit der Niederschlagssumme. Eingetragen ist der Spitzenabflusskoeffizient (Q/N, strichliert) und der Volumenabflusskoeffizient (\(\Sigma Q/\Sigma N\), ausgezogene Linie).

5 Abflussberechnungen

5.1 Einleitung

Das hier eingesetzte Niederschlag-Abfluss-Modell (NAM) QAREA wurde am Institut für Hydromechanik und Wasserwirtschaft der ETH Zürich entwickelt und erfasst die bei der Hochwasserentstehung beteiligten Abflussprozesse. Dieses Modell ist ein Hilfsmittel, das erlaubt, das Abflussverhalten des EZG auf verschiedene Starkniederschläge rechnerisch zu simulieren und die Reaktion auf seltene meteorologische Bedingungen (Niederschlags-Szenarien) abzuschätzen. Die Wirkung von Rückhaltebecken kann ebenfalls nach entsprechender Anpassung des Modells untersucht werden.

5.2 Grundlagen und Aufbau des Modells QAREA

Die Abbildung 5.1 zeigt die Grundlagen des NAM QAREA. Das Modell wurde den Verhältnissen entsprechend für den Dorfbach Buttisholz und seine Seitenbäche erstellt. Zusammenfassend die wichtigsten Grundlagen und Eigenschaften des Modells QAREA:

- Das NAM ist aus Teileinzugsgebieten aufgebaut mit Bemessungspunkten (BP, Abb. 5.1a)
- Das NAM basiert auf der Klassifizierung der Abflussbereitschaft der Teileinzugsgebietsflächen (Abflusstypen, Abb. 5.1b) und den dazugehörenden Abflussreaktionen (Abflussreaktionskurven, Abb. 5.1c, Kap. 4.6).
- Die **Fliesszeiten** bis zum Teileinzugsgebietsausgang (Isochronen) und die Fliesszeiten in den Gerinnen wurden berücksichtigt (Abb. 5.1d).
- **Niederschläge:** Zur Simulation von Landregen aber auch kurzen Gewitterniederschlägen kann das Gebiet gleichmässig überregnet werden oder auch nur Teile davon.

Ein Schema des eingesetzten Modells ist im Anhang 4 zu finden. Der gefallene Niederschlag wird aufgeteilt in Direktabfluss und in den Boden infiltrierendes Wasser. Das infiltrierte Wasser wird im Boden gespeichert und verzögert wieder abgegeben. Die Reaktion dieser Bodenspeicher wird mit linearen Speichern modelliert. Für jeden Abflusstypen wird eine eigene Speichercharakteristik angenommen. Der Direktabfluss erfährt auf dem Weg ins Gerinne eine Verzögerung durch Retention (Oberflächenspeicher), welche ebenfalls mit einem linearen Speicher simuliert wird.

Das HRB Fürti (BP 1) kann im Modell mit einer einstauabhängigen Drosselcharakteristik berücksichtigt werden.

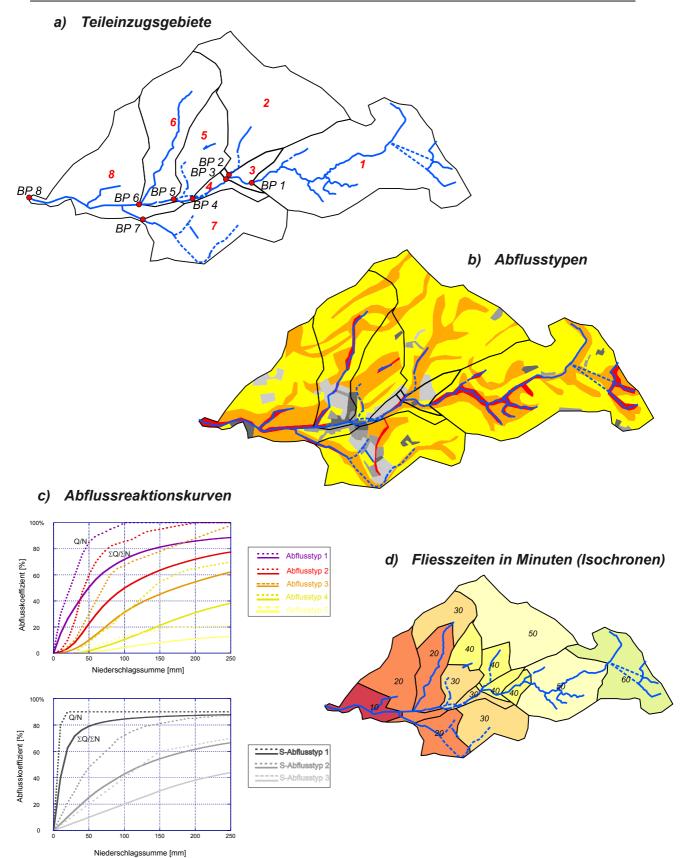


Abb. 5.1: Die Grundlagen des Niederschlag-Abfluss-Modells QAREA a) Die Teileinzugsgebiete mit den Berechnungspunkten,

- b) die Abflusstypen,
- c) die Abflussreaktionskurven,
- d) die Fliesszeiten in Minuten (Isochronen).

5.3 Modellverifikation

Für die Modelleichung wurden die Hochwasser vom 21./22. August 2005 (Anhang 5a), vom 8. August 2007 (Anhang 5b) und vom 29.7.2010 nachgerechnet. Bei diesen Hochwasserereignissen waren folgende Voraussetzungen für eine Modelleichung gegeben:

- Es waren Niederschlagsereignisse, welche die ganze Region betrafen. Es wurden die zeitlichen Niederschlagsverteilungen der hoch aufgelöst messenden kantonalen Station Willisau für den Niederschlagsinput verwendet.
- Aufgrund der vorliegenden Daten der umliegenden Tagessammler konnte die räumliche Niederschlagsverteilung mittels Interpolation abgeschätzt und für den Niederschlagsinput verwendet werden (Anhang 3).

Die Abflussspitzen der Hochwasser zwischen Bemessungspunkt 3 und 4 (Mülihof) sind bekannt (Kap. 3.3.2). Die Abflussspitzen der Hochwasser 2005, 2007 und 2010 konnten befriedigend nachgerechnet werden. Bei den ersten beiden Hochwasser wurde die Abflussspitze mit dem Modell etwas unterschätzt und beim Hochwasser 2010 etwas überschätzt. Über den Verlauf der Hochwasser und die Abflussvolumina konnten allerdings keine detaillierten Beobachtungen in Erfahrung gebracht werden. Insgesamt ergibt das Modell plausible Ergebnisse und kann für die Abflussberechnungen (Kap. 5.5) eingesetzt werden.

5.4 Niederschlag-Szenarien

5.4.1 Räumliche Niederschlagsverteilung

Niederschläge haben eine zeitliche (Dauer und Intensität des Niederschlags) und eine räumliche Verteilung (Überregnung des Gebiets). Die Zentren von Konvektionszellen, in denen die Niederschlagsmaxima von kurzen Starkniederschlägen (≤ 4 h Dauer) fallen, sind auf wenige km² begrenzt. Weil aber die Fläche des EZG mit ca. 6 km² klein ist, können auch kurze Starkniederschläge das Gebiet voll überregnen. Daher wurde eine gleichmässige räumliche Niederschlagsverteilung angenommen.

5.4.2 Zeitliche Niederschlagsverteilung und Niederschlagsintensitäten

Für die Auswahl von Niederschlägen unterschiedlicher Dauer und Jährlichkeit ist eine Station mit Niederschlagsstatistik erforderlich, die möglichst den Gegebenheiten am Ort der Untersuchung entspricht. Allerdings liegen in der direkten Umgebung von Buttisholz kaum Niederschlagsstationen, die sowohl über eine lange Messdauer und noch über eine aktualisierte Statistik verfügen. Die Stationen Beromünster (11 km NE von Buttisholz), Eigenthal (16 km SE von Buttisholz) und Luzern (17 km ESE von Buttisholz) erfüllen diese Anforderungen. Die erst kürzlich erneuerte Statistik von Luzern (Scherrer AG, 2015) wurde als geeignet betrachtet.

Für die Niederschlagsstatistik von Luzern wurden die Daten aus Jahrbüchern und digitalen Daten der MeteoSchweiz (Messreihe von 1881 – 2014) zusammengetragen und statistisch analog zu Zeller et al. (1978) ausgewertet². Zusätzlich wurden die hoch aufgelösten Niederschlagsdaten der Station Luzern der Jahre 1981 bis 2014 ausgewertet (Scherrer AG, 2015; Anhang 6).

Analog zur Untersuchung am Götzentalbach (Scherrer AG, 2015) wurde die kurzen Niederschläge erhöht. Diese Erhöhung der statistischen Werte wurde nach einem Vergleich der

Die neuen statistischen Werte der Station Luzern sind gegenüber Zeller et al. (1978) für den 100-jährlichen 1-Tageswert ca. 5 % höher.

grössten ausgewerteten Gewitterniederschläge mit einzelnen, nicht in der Statistik enthaltenen Beobachtungen der Station Luzern als notwendig erachtet (siehe Tab. 5.1).

Bei kurzen Niederschlägen bis 4 h Dauer wurde eine zeitliche Dreiecksverteilung angenommen mit der Niederschlagsspitze nach einem Drittel der Niederschlagsdauer. Für die 12 h-, 24 h- und 48 h-Niederschläge wurde eine gleichmässige zeitliche Verteilung (Blockregen) verwendet. Tabelle 5.1 zeigt die für die Modellrechnungen verwendeten Werte:

Tab. 5.1: Die für die Modellrechnungen verwendeten Niederschlagswerte (Luzern 1881 – 2014, nicht erhöhte Werte). Die kurzen Niederschläge (< 4 h.) wurden um 20% erhöht

nicht erhonte Werte). Die kurzen Niederschlage (≤ 4 h) wurden um 20% erhont.							
Bezeichnung	Niederschlags-	Wieder-	Zeitliche	Niederschlags-	Max. Nieder-		
des Nieder-	dauer [h]	kehr-	Verteilung des	menge	schlagsintensität		
schlags		periode	Niederschlags	[mm]	[mm/h]		
		[Jahre]					
0.5h30j_dreieck	0.5	30	Dreieck	37.6	112.9		
1h30j_dreieck	1	30	Dreieck	48.5	84.9		
2h30j_dreieck	2	30	Dreieck	56.1	52.6		
4h30j_dreieck	4	30	Dreieck	61.8	29.9		
12h30j_block	12	30	Blockregen	89.7	7.5		
24h30j_block	24	30	Blockregen	102.1	4.3		
48h30j_block	48	30	Blockregen	118.9	2.5		
0.5h100j_dreieck	0.5	100	Dreieck	44.1	132.4		
1h100j_dreieck	1	100	Dreieck	57.9	101.2		
2h100j_dreieck	2	100	Dreieck	67.4	63.2		
4h100j_dreieck	4	100	Dreieck	73.4	35.6		
12h100j_block	12	100	Blockregen	106.3	8.9		
24h100j_block	24	100	Blockregen	119.5	5.0		
48h100j_block	48	100	Blockregen	138.1	2.9		
0.5h300j_dreieck	0.5	300	Dreieck	50.0	150.1		
1h300j_dreieck	1	300	Dreieck	66.3	116.1		
2h300j_dreieck	2	300	Dreieck	77.7	72.8		
4h300j_dreieck	4	300	Dreieck	84.0	40.7		
12h300j_block	12	300	Blockregen	121.4	10.1		
24h300j_block	24	300	Blockregen	135.3	5.6		
48h300j_block	48	300	Blockregen	155.5	3.2		

Die Analyse der Hochwasserereignisse vom August 2005 (Anhang 5a) und August 2007 (Anhang 5b) zeigte, dass in den 1.5 Tagen vor den das Hochwasser auslösenden intensiven Niederschlägen bereits bis zu ca. 50 mm Regen fiel, die das Abflussverhalten des EZG beeinflussten. Deshalb wurden für die Berechnung der langen 12 h-, 24 h- und 48 h- Niederschläge mit einem Vorregen von 50 mm gerechnet³.

5.5 Abflussberechnungen

Tabelle 5.2 zeigt die Resultate der Modellrechnungen. Fett gedruckt sind die grössten Abflüsse. Die Berechnungen zeigen, dass Gewitterniederschlägen von 1 und 2 Stunden Dauer die grössten Abflussspitzen erzeugen.

³Heftige Gewitter fallen in der Regel eher auf trockene Vorbedingungen, weshalb bei den kurzen Niederschlägen bis 4 h Dauer kein Vorregen berücksichtigt wird.

Tab. 5.2: Die Resultate der Berechnungen mit dem NAM QAREA.

Wiederkehr- periode	Bezeichnung des Niederschlags	Niederschlags- szenario	Abflus	sspitze	en [m3	/s] bei	den B	erechn	ungsp	unkten	Becken- füllung [m³]
[Jahre]			BP 1	BP 2	BP 3	BP 4	BP 5	BP 6	BP 7	BP 8	Vol HRB
	0.5h30j_dreieck	Dreieck	3.0	1.4	4.6	4.7	5.3	6.3	1.6	8.6	0
	1h30j_dreieck	Dreieck	4.0	2.0	6.2	6.4	7.3	8.8	2.0	12.5	0
	2h30j_dreieck	Dreieck	3.7	1.9	5.8	6.0	7.0	8.7	1.8	12.5	0
30	4h30j_dreieck	Dreieck	2.8	1.4	4.4	4.6	5.3	6.7	1.3	9.6	0
	12h30j_block	gleichmässig	2.3	1.4	3.9	4.0	4.6	5.7	1.1	8.0	0
	24h30j_block	gleichmässig	1.5	1.0	2.6	2.6	3.0	3.7	0.7	5.2	0
	48h30j_block	gleichmässig	1.0	0.6	1.6	1.7	2.0	2.4	0.5	3.4	0
	0.5h100j_dreieck	Dreieck	4.6	2.2	7.1	7.3	8.1	9.7	2.4	12.9	0
	1h100j_dreieck	Dreieck	6.3	3.3	9.9	10.2	11.5	13.8	3.0	19.4	0
	2h100j_dreieck	Dreieck	5.8	3.1	9.3	9.5	11.0	13.6	2.8	19.4	0
100	4h100j_dreieck	Dreieck	4.1	2.2	6.6	6.8	8.0	10.0	2.0	14.2	0
	12h100j_block	gleichmässig	2.9	1.9	5.0	5.1	5.9	7.3	1.4	10.2	0
	24h100j_block	gleichmässig	1.8	1.2	3.2	3.3	3.7	4.6	0.9	6.5	0
	48h100j_block	gleichmässig	1.2	0.8	2.0	2.1	2.4	3.0	0.6	4.1	0
	0.5h300j_dreieck	Dreieck	6.3	3.1	9.8	10.0	11.1	13.2	3.1	17.5	0
	1h300j_dreieck	Dreieck	8.6	4.6	13.7	14.1	15.8	19.0	4.1	26.6	0
	2h300j_dreieck	Dreieck	8.0	4.4	12.8	13.2	15.2	18.7	3.7	26.6	0
300	4h300j_dreieck	Dreieck	5.5	3.1	9.0	9.3	10.7	13.4	2.6	19.0	0
	12h300j_block	gleichmässig	3.5	2.3	6.0	6.2	7.1	8.8	1.7	12.3	0
	24h300j_block	gleichmässig	2.2	1.4	3.7	3.9	4.4	5.5	1.0	7.6	0
	48h300j_block	gleichmässig	1.4	0.9	2.3	2.4	2.8	3.4	0.6	4.8	0

6 Hochwasserabflüsse definierter Jährlichkeit

6.1 Einleitung

Im Sinne einer Synthese werden die Erkenntnisse der Untersuchung der Abflussreaktion, der historischen Hochwasser und der Resultate der Modellrechnungen zusammengeführt. Letztere beiden werden in einem Frequenzdiagramm zueinander in Beziehung gesetzt, um die massgebenden Hochwassermengen festzulegen. Dies liefert ein Gesamtbild und zeigt den Unsicherheitsbereich der einzelnen Untersuchungen und der Hochwasserabschätzung auf. Bei der Festlegung der massgebenden Abflüsse verspricht dieses Vorgehen eine grössere Verlässlichkeit.

6.2 Dorfbach beim Mülihof (BP4) <u>ohne</u> den Einfluss des bestehenden Rückhaltebeckens Fürti

Die wesentlichen Punkte der einzelnen Untersuchungen sind:

Ergebnisse der Erkundung historischer Hochwasser (Kap. 3):

- Durch die Recherchen über historische Hochwasser eröffnet sich ein Beobachtungszeitraum von ca. 100 Jahren.
- Sowohl Gewitter als auch Landregen erzeugten in Buttisholz verschiedene Hochwasser mit Überschwemmungen.
- Sehr grosse Ereignisse wurden keine gefunden, dafür fünf grosse Hochwasser mit einer Abflussspitze zwischen 3.6 und 5.7 m³/s.
- Die Hochwasser von 1975, 2003, 2007 und 2013 waren zusammen mit demjenigen von 1935 die grössten fünf Ereignisse der letzten ca. 80 Jahre. Ihre Wiederkehrperiode liegt bei etwa 16 bis 80 Jahren.

Ergebnisse der Beurteilung der Abflussreaktion (Kap. 4):

Die Abflusstypen 1-3 und die Abflusstypen der Siedlungsflächen machen insgesamt 41.5% des EZG aus. Die Abflussreaktion des Dorfbachs Buttisholz wird daher als mässig beurteilt. Ein wesentlicher Grund für diese Einschätzung sind die speicherfähigen und recht gut durchlässigen Böden im EZG.

Ergebnisse der Berechnungen mit dem Niederschlag-Abflussmodell (Kap. 5):

Die Ergebnisse der Abflussberechnungen (violette Balken in Abb. 6.1) ergänzen die Ergebnisse der historischen Erkundungen und ermöglichen die Abschätzung seltener Hochwasser.

Die roten Linien markieren den Unsicherheitsbereich und die vorgeschlagenen Hochwasserabflüsse bestimmter Jährlichkeit. Für den BP 4 (Mülifeld, EZG $3.43~\text{km}^2$) ergibt das Modell für die grössten Szenarien ein HQ₃₀ von $5.5-7.0~\text{m}^3/\text{s}$, für ein HQ₁₀₀ $8.5-10.5~\text{m}^3/\text{s}$. Die Hochwasserabflüsse, besonders die des HQ₃₀, liegen auf der sicheren Seite. Dies liegt vo allem daran, dass die Rekonstruktion der Abflussspitzen der vergangenen Jahre schwierig war.

Abbildung 6.1 zeigt zum Vergleich noch die HQ_x der Gefahrenkarte als grüne Quadrate (Oeko-B, GEOTEST AG, PlanQuadrat AG, 2009). Aufgrund der vorliegenden Untersuchungen liegen nun kleinere Hochwasserabflüsse unterschiedlicher Jährlichkeit vor.

Tab. 6.1: Die im EZG des Dorfbachs Buttisholz ermittelten Hochwasserabflüsse bestimmter Jährlichkeit.

ВР	zugeordneter Gerinneabschnitt	HQ ₃₀	HQ ₁₀₀	HQ ₃₀₀
		[m³/s]	[m³/s]	[m³/s]
1	EZG oberhalb BP 1: HRB Fürti (1.90 km²)	3.0 – 4.0	5.0 – 6.5	7.0 – 9.0
2	EZG oberhalb BP 2: Zihl (1.30 km²)	1.5 – 2.0	2.5 – 3.5	3.5 – 5.0
3	EZG oberhalb BP 3: oberhalb Mülihof (3.33 km²)	5.0 – 6.5	8.0 – 10.0	11 - 14
4	EZG oberhalb BP 4: Mülifeld (3.43 km²)	5.5 – 7.0	8.5 – 10.5	12 - 15
5	EZG oberhalb BP 5: Dorfzentrum (3.91 km²)	6.0 – 7.5	9.5 – 12.0	12.5 - 16
6	EZG oberhalb BP 6: Underdorf (4.81 km²)	7.0 – 9.0	11 - 14	15 - 19
7	EZG oberhalb BP 7: Banschimatt (0.89 km²)	1.5 – 2.0	2.5 – 3.0	3.5 – 4.5
8	EZG oberhalb BP 8: ARA (6.66 km²)	10 - 13	15 - 20	22 - 28

6.3 Der Einfluss des Hochwasserrückhaltebeckens Fürti auf die Abflussspitzen im Dorf

Das Hochwasserrückhaltebeckens Fürti hat ein Retentionsvolumen von 28'800 m³. Das Becken wurde 2011 in Betrieb genommen mit einer maximalen Drosselwassermenge von 3 m³/s. Im Frühjahr 2015 wurde die maximale Drosselwassermenge auf 1 m³/s reduziert. Die Frage stellt sich, wie sich das Becken auf die Abflussspitzen des Dorfbachs auswirkt.

Die Modellrechnungen des Kapitels 5.5 wurden mit Berücksichtigung des HRB Fürti wiederholt⁴. Es wurden variable Drosselwassermengen von maximal 1 m³/s, 2 m³/s und 3 m³/s berücksichtigt. Die Ergebnisse (HQ_x bei den BP, Beckenfüllung je Drosselwassermenge) sind im Anhang 7 a) – c) dargestellt.

Wird mit einer **Drosselwassermenge von 1 m³/s** nur wenig Wasser aus dem Becken entlassen (Anhang 7 a), werden beim BP4 zwar die Abflussspitzen bei einem HQ_{100} von 8.5 - 10.5 m³/s auf 4.6 m³/s gedämpft. Bei den massgebenden Szenarien werden die Abflussspitzen stark gedämpft. Bei den Szenarien mit längeren Niederschlägen aber geringeren Abflussspitzen überläuft das Becken und zwar schon bei einem HQ_{30} .

Bei einer **Drosselwassermenge von 2 m³/s** überläuft das Becken bei einem HQ_{100} nicht und beim BP4 werden die Abflussspitzen bei einem HQ_{100} von 8.5 - 10.5 m³/s auf 5.3 m³/s gedämpft. Bei langen Ereignissen werden 23'000 m³ der verfügbaren 28'000 m³ genutzt. Erst bei einem HQ_{300} erschöpft sich das Retentionsvolumen.

Bei einer **Drosselwassermenge von 3 m³/s** ist die dämpfende Wirkung geringer (Abflussspitze HQ_{100} beim BP 4 6.0 m³/s), das HRB überläuft weder beim HQ_{100} noch beim HQ_{300} .

Mit einer Drosselwassermenge von ca. 2 m³/s wird bei einem HQ₁₀₀ das Beckenvolumen nahezu ausgeschöpft und die Abflüsse werden am stärksten gedämpft werden.

⁴Das HRB Fürti wurde mit einer variablen Drosselwassermenge modelliert, welche die Einstauhöhe und das höhenabhängig verfügbare Retentionsvolumen berücksichtigt.

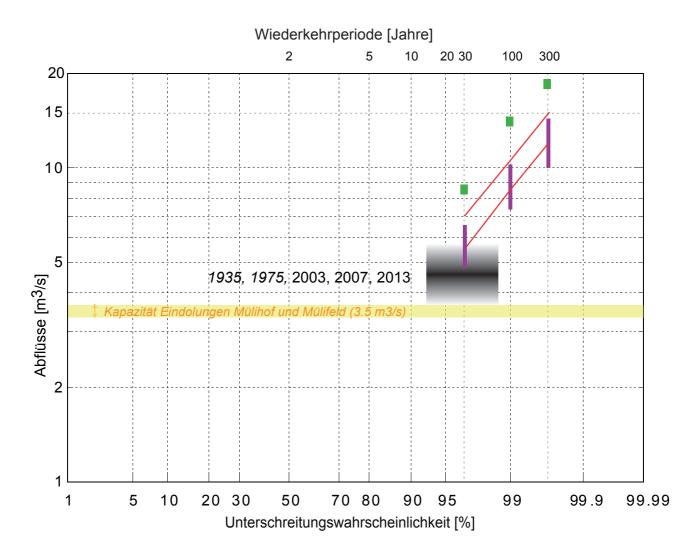


Abb. 6.1: Das Frequenzdiagramm des Dorfbachs in Buttisholz beim Mülihof (BP 4, 3.43 km2).

Eingetragen sind die Kapazität der Eindolungen Mülihof und Mülifeld (gelb), die Werte der Gefahrenkarte für das kleinerer EZG beim BP 3 (grün), die Resultate der Berechnungen mit Modellregen (violett) und der wahrscheinliche Bereich der historischen Hochwasser (hellgrau). Für die beiden Hochwasser 1935 und 1975 liegen keine Abflussschätzungen vor. Die roten Linien markieren den Unsicherheitsbereich für die vorgeschlagenen Hochwasserabflüsse bestimmter Jährlichkeit.

6.4 Ausleitwassermenge in den Chottegrabe (BP4)

In der Eindolungsstrecke zwischen BP4 und BP 5 liegt ein Kapazitätsengpass (max. 3.5 m³/s). Mit einer gezielten Ausleitung des Dorfbaches oberhalb Mülimatt soll das Wasser entlang des heutigen Dammes in einem neuen Kanal geleitet werden.

Am Chottegrabe geht Planquadrat (2013) davon aus, dass bei einem HQ_{30} kein Wasser vom Dorfbach in den Chottegrabe entlastet werden muss. Dies wahrscheinlich darum, weil davon ausgegangen wird, dass oben erwähnter Engpass beseitigt werden kann. Bei einem HQ_{100} sollen 1.6 m³/s ausgeleitet werden.

Mit den vorgängig aufgeführten Hochwasserabflüssen (HQ_x) wird von kleineren Abflussmengen ausgegangen. Das zu erwartenden HQ_{100} beim BP4 hängt von den Drosselwassermenge des HRB Fürti ab.

Bei einer **Drosselwassermenge von 2 m³/s** wird bei BP4 ein HQ₁₀₀ von ca. 5.3 m³/s erwartet. Max. 3.5 m³/s schluckt die Eindolung des Dorfbachs beim Mülifeld, verbleiben noch ca. 2 m³/s, die in den Chottegrabe ausgeleitet werden müssen. Bei einem HQ₃₀ (BP 4: 3.7 m³/s) müsste die Ausleitung nur geringfügig aktiviert werden.

Wenn die Eindolung im Mülifeld ihre maximale Abflusskapazität aber aus irgendwelchen Gründen (z.B. Verstopfung) nicht erbringen kann, sind die Ausleitwassermengen grösser.

Scherrer AG Hydrologie und Hochwasserschutz

Dr. Simon Scherrer Dr. Daniel Naef-Huber

Reinach, 19. Oktober 2015

Sachbearbeiter:

Dr. Simon Scherrer, Dipl. Geograph Uni Basel

Dr. Daniel Naef-Huber. Dipl. Bau-Ing, ETH Zürich

7 Anhang

Anhang 1: Historische Hochwasser

Anhang 2: Tagesniederschläge

Anhang 3: Räumliche Niederschlagsverteilung

Anhang 4: Modellaufbau

Anhang 5: Modellverifikation

Anhang 6: Niederschlagsstatistik Luzern (1881 – 2014)

Anhang 7: Beckenberechnungen mit unterschiedlichen Drosselwassermengen

Anhang 8a-d: Untersuchte Bodenprofile

Datum	Nieder- schlag	Angaben zum Ereignis	Quelle
1917, 17.08.		17. August. Erdschlipfschäden in Werthenstein und Buttisholz . Dem Schweizerischen Fonds wurden von 25 Besitzern Fr. 14,240 Schaden an Kulturen und Boden gemeldet.	Lanz-Stauffer & Rommel (1936)
1935, 29.05.	37 mm (Beromünster)	Überflutung Hinterdorf, Dorfkern, Unterdorf und südseitige Dorfscheunen. Auf der Brücke 20 cm Wasser mit zügiger Strömung.	Gemeinde But- tisholz (1986)
		Überflutung Hinterdorf, Dorfkern, Unterdorf und südseitige Scheunen. Beim 1935 Ereignis wurden grösste Wassermassen mit zügiger Strömung beobachtet. Der Dorfbach war 1935 schon eingedolt.	Oeko-B (2002)
1953, 26.06.	25./26.6.: 87 mm (Beromünster)	Der Dorfbach und der Mülibach überfluteten das Hinderdorf, den Dorfkern und das Underdorf sowie die südseitigen Scheunen.	Gemeinde But- tisholz (1986)
1973, 28.07.	Dauerregen	Hochwasser im ganzen Gemeindegebiet.	Oeko-B (2002)
1975, 29./30.08.		Buttisholz : im Gebiet Ausbrüche der Wigger, der Rot, des Rothbaches und zahlreicher Nebenbäche (nicht aber der Luthern); auch zahlreiche Erdschlipfe (speziell in der Region Zell, Hüswil und Gettnau). Ganze Quartiere überschwemmt; schwere Schäden an Häusern, Mobiliar, Strassen und Kulturland (sowie an Tieren). Anmerkung: Region Luthern und Hergiswil weitgehend verschont geblieben (dank Verbauungen). Ursache (Meteo) Gewitter im Quellgebiet des Napfes sowie sintflutartige Regenfälle in der Nacht.	WSL (2015)
		Beim Schlossrain staute sich das Wasser . Es nahm seinen Weg über das Mülifeld und setzte die Bäckerei Bucher () mannshoch unter Wasser.	Gemeinde But- tisholz (1986)
		Der Dorfbach blieb im Gerinne, die Seitenbäche sind ausgebrochen. Es entstanden ziemliche Überflutungen im Dorf (Karte).	Ereigniskataster Luzern, StorME- Nr. 1935-W- 0089
		Der Dorfbach Ausbruch führte im Mülifeld zur Überflutung. Darunter blieb der Dorfbach knapp im Gerinne und führte eine trübe Wassermengen, welche jedoch kein Geschiebe enthielt. Die Keller im Dorf wurden knapp nicht überflutet. Das Wasser floss unterhalb des Dorfes auf der Hauptstrasse.	Oeko-B, geotest AG, PlanQua- drat AG (2009)
		Stöcklibach: Schacht zwischen Post / Müli verstopfte. In der Folge wurde der Postkeller überflutet.	Ereigniskataster Luzern, StorME- Nr. 1975-W- 0090

Anhang 1: Dokumentierte Hochwasser . Seite 1 von 7

Datum	Nieder- schlag	Angaben zum Ereignis	Quelle
1976	Gewitter	Stockbach: Beim Sommergewitter verklauste ein Schacht zwischen Müli und Post, dies führte zur Keller Überflutung des Postgebäudes.	Oeko-B, geotest AG, PlanQua- drat AG (2009)
1978, 07.08.	Dauerregen 6./7.8.1978 103 mm	Stöcklibach: Nach dem Ausbruch des Stöcklibaches, wurde der Keller der Post bis unter die Decke geflutet.	Oeko-B, geotest AG, PlanQua- drat AG (2009)
1980		Im Jahre 1980 kam es zweimal zu einem Teil-Ausbruch des Dorfbaches am unteren Ende des Dorfplatzes.	Oeko-B, geotest AG, PlanQua- drat AG (2009)
1986, 20.06.	Gewitter	Buttisholz: Überschwemmungsschäden. Anmerkung: Im Kanton Luzern insgesamt 112 Notrufe (vor allem im Luzerner Hinterland und im Wiggertal). Schäden in Millionenhöhe; 45-Minuten-Gewitterregen; 'jeder Graben wurde zu einem Bach, Kanalisationen und Abläufe mit Geschiebe verstopft, Keller etc. überschwemmt. Anmerkung zu genereller Wetterlage von Ereignis 86.24 (aus TAGES ANZEIGER vom 23.06.1986): "Auf die Häufung von schweren lokalen Unwettern angesprochen, sagte ein Sprecher der Schweizerischen Meteorologischen Anstalt in Zürich, dass die Schäden deshalb so gross seien, weil es während der Gewitter der letzten Tage und Wochen relativ windstill gewesen sei. Die Gewitterfront sei dadurch nicht wie üblich weitergezogen, sondern habe sich jeweils über einzelnen Regionen während längerer Zeit entladen. Zudem hätten eher östliche Winde geherrscht, was angesichts der Ausrichtung der Vegetation und baulicher Infrastruktur erfahrungsgemäss zu grösseren Schäden führe als die häufigeren Westwindgewitter."	WSL (2015)
		Das Schweikhüserebächli trat über die Ufer. Überschwemmung des neuen Sebaldmattquartiers, Tannemoos, Wydenmatt. Liegenschaft Raspel wurde schuhtief mit Wasser gefüllt. Feuerwehreinsatz Tannemoos, Wydenmatt wegen gefüllten Kellern.	Ereigniskataster Luzern, StorME- Nr. 1986-W- 0052
		Schweikhüserebach, Dorfbach, Tannebach: In die Liegenschaft Raspel floss schuhtief Wasser, welches aus einem defekten Schacht auslief. Das Sebaldemattquartier wurde überschwemmt. Im Gebiet Tannemoos und Wydenmatt musste die Feuerwehr Keller auspumpen.	Oeko-B, geotest AG, PlanQua- drat AG (2009)
1998, 25.12.		Mülibechli überschwemmte (Verklausung), übrige Bäche waren randvoll.	Ereigniskataster Luzern, StorME- Nr. 1986-W- 0052

Anhang 1: Dokumentierte Hochwasser . Seite 2 von 7

Datum	Nieder- schlag	Angaben zum Ereignis	Quelle
2003, 07.06	Gewitter	Am Samstagabend gingen innert dreier Stunden über 150 Schadensmeldungen bei der Kantonspolizei Luzern ein. Die Schäden betrafen vor allem die Gemeinden Menznau, Buttisholz , Nottwil und Inwil, doch auch Wolhusen, Willisau, Grosswangen, Eschenbach, Ballwil und Perlen waren vom Gewitter stark betroffen. In Buttisholz wurde u.a. eine Tiefgarage überschwemmt. Im Gebiet Fürte / Fürti trat der Horütibach (= Buttisholzbach?) über die Ufer und überflutete Kulturland; weiter unten überschwemmte er die Dorfteile Mühlefeld, Hinterdorf, Arigstrasse und Dorf bis hin ins Unterdorf (Landmaschinen Ruckli). Tiefgaragen und Keller wurden mit Wasser gefüllt, zehn Autos und Mobiliar wurde zerstört, Warenlager von Gewerbebetrieben wurden unter Wasser gesetzt. Die erste Meldung ging um ca. 20:00 ein. Die Allee von Buttisholz verwandelte sich in einen Fluss. Im Quartier Sebaldematt mussten verschiedene Keller ausgepumpt werden.	WSL (2015)
		Ergiebige Starkniederschläge führten zu diversen Bachausbrüchen im ganzen Gemeindegebiet. Der Dorfbach überflutete das Gebiet Hinterdorf. Der Schweikhüserebächli-Ausbruch führte zu Wasserschäden in der Sebaldematt. Die Gebiete Moos und Hetzliger Moos wurden vom Wasser aus dem Arigbächli, der Rot, sowie dem Schauberebächli überschwemmt. Der Tannebach überflutete das Tannemoos. Die Überlast des Zihlbaches konnte in der Geländemulde aufgefangen werden und floss nicht über die Kantonsstrasse. Der Chottegraben verklauste und das Wasser floss der Strasse entlang Richtung Strittmatt.	Oeko-B, geotest AG, PlanQua- drat AG (2009)
2005, 21.08.	Dauerregen, 19 21.8.: 125 mm (Beromünster)	Am Abend gingen innert 3 h über 150 Schadensmeldungen bei der Kantonspolizei Luzern ein. Die Schäden betrafen v.a. die Gemeinden Menznau, Buttisholz , Nottwil und Inwil, doch auch Wolhusen, Willisau, Grosswangen, Eschenbach, Ballwil und Perlen waren vom Gewitter stark betroffen. In einigen Kellern oberhalb des Dorfes musste Wasser ausgepumpt werden (mit 22.08.2005 zus. 10 Häuser betroffen) - Dorfbach und weitere Gewässer- Kulturland überflutet - Baugrube überflutet- Ortsverbindungsstrasse Ruswil - Buttisholz - Grosswangen gesperrt Schäden Wasserbau: Zuflüsse Wigger (?) Schwellen, Uferverbauung, Profilerweiterung "	WSL (2015)
		Ereignisdok. Starkniederschläge 23.8.2005: Überflutungen	Oeko B (2005)
		Diverse Bachausbrüche. Betroffene Gebiete Dorfkern, Hinterdorf, Unterdorf, Schloss, Seebaldmatt, Wydenmatt, Staltesagi, Strittmatt, Moos, Tannenmoos, Hetzliger Moos, Brunnacher.	Ereigniskataster Luzern, StorME- Nr. 2005-W- 0089
		Auf die Starkniederschläge reagierten die Bäche ähnlich wie am 08.06.2003. Zusätzlich führte der Stöcklibach zu Wasserschäden bei den Gebäuden im Gebiet Schloss. Der Bach an der Gemeindegrenze zu Grosswangen verklauste im Gebiet Meierhöfli. Spontane Rutschung bei Hütte in Rot (ca. 5 m³). Bei Meienberg spontane Rutschung in Horütibach (ca. 5 m³).	Oeko-B, geotest AG, PlanQua- drat AG (2009)
2007, 12.06.		Wassereinbruch Sonnhalde (?)	Feuerwehr But- tisholz (2015)

Anhang 1: Dokumentierte Hochwasser . Seite 3 von 7

Datum	Nieder- schlag	Angaben zum Ereignis	Quelle
2007, 08.08.	Dauerregen 7./8.8.: 119 mm (Beromüns- ter)	Anhaltender Regen hat in der Schweiz Flüsse über die Ufer treten lassen, Keller geflutet und Strassen überschwemmt. Der Kanton Luzern rief am Abend des 8.8.07 den Kantonalen Krisenstab zusammen. Mehr als 1500 Feuerwehrleute standen in der Nacht im ganzen Kanton im Einsatz. Am Mittag des 9.8.07 konnte der Krisenstab wieder Entwarnung geben. Die Gebäudeversicherung rechnete kurz nach dem Ereignis mit 600-800 Schadenfällen und einer Schadensumme von 6-8 Mio. Fr. Am stärksten betroffen waren die Gemeinde Littau und das Seetal. In Buttisholz standen viele Kellerräume und eine Tiefgarage (1.5 m) unter Wasser. Die Feuerwehr leistete mit 55 Personen Einsatz. Die riesigen Wassermassen konnten mittels Beaver-Schläuche über die Arigstrasse und unterhalb der St. Ottillienstrasse auf die Wiese geleitet werden. Das Wasser staute sich z.T. auch im Gewerbegebiet und überschwemmte mehrere Betriebe. Der neue Damm, welcher das Dorf (v.a. das Wohngebiet Mühlefeld) schützt, hielt den Wassermassen stand. Einige Bäche überfluteten aber die umliegenden Gebiete. Die Strasse bei der Schuelmatt wurde überschwemmt. Die Wassermassen flossen Richtung Post, über den Postplatz und auf die Hauptstrasse. Das abfliessende Wasser staute sich z.T. im Gewerbegebiet und überschwemmte mehrere Gewerbebetriebe. Im Dorf selber wurden etliche Keller überschwemmt. Eine Tiefgarage wurde mit rund 1.5 m Wasser gefüllt. Bei einer Sägerei wurde Holz weggeschwemmt. Die Strasse zum Mühlehof war nicht mehr befahrbar (Kies bis 80 cm tief ausgewaschen). Im Moos blieb eine Wiese längere Zeit überschwemmt.	WSL (2015)
		Diverse Bachausbrüche. Betroffene Gebiete: Dorfkern, Unterdorf, Schloss Seebaldmatt, Wydenmatt, Staltesagi, Strittmatt, Tannenmoos, Hetzliger Moos.	Ereigniskataster Luzern, StorME- Nr. 2007-W- 0062
		Einige Bäche mit Verklausungen und Übersarungen im ganzen Gemeindegebiet (vor allem: Dorfkern, Gluggere, Stalte, Mooshüsli), Hangwasserprobleme.	OekoB (2007)
		Die Starkniederschläge führten zu ähnlichen Überschwemmungen wie am 25.08.2005. Der neugebaute Erddamm verschonte das Seabaldemattquartier vor Wasserschäden. Der Erddamm im Hinterdorf verhinderte den Ausbruch zwar nicht, schützte aber die anliegenden Häuser vor dem Wassereinbruch. Die Rot wies in St. Ottilien durch die grossen Wassermassen Seitenerosionen auf. Tannemoos wurde trotz des Dammes überschwemmt. Drei spontane Rutschungen bei der Strassenböschung Zinzerswilerstrasse, durch Hangwasser ausgelöst. Hangwasser löste bei Schwanden unterhalb des Feldwegs eine Rutschung aus (ca. 10 m³).	Oeko-B, geotest AG, PlanQua- drat AG (2009)
2009		In Buttisholz kam es immer wieder zu Überschwemmungen, etwa 2003, 2005, 2007, 2009, 2010 und 2013. Mit dem ersten Teilprojekt des Hochwasserschutzprojektes wurde an einer Engstelle im Gebiet Fürti ein Hochwasserrückhaltebecken geschaffen. Das zweite Teilprojekt sieht einen Ausbau des Dorf- und Tannenbachs im Siedlungsgebiet vor. Beide Teilprojekte waren 2010 öffentlich aufgelegt worden.	Neue Luzerner Zeitung, 30.6.2014

Anhang 1: Dokumentierte Hochwasser . Seite 4 von 7

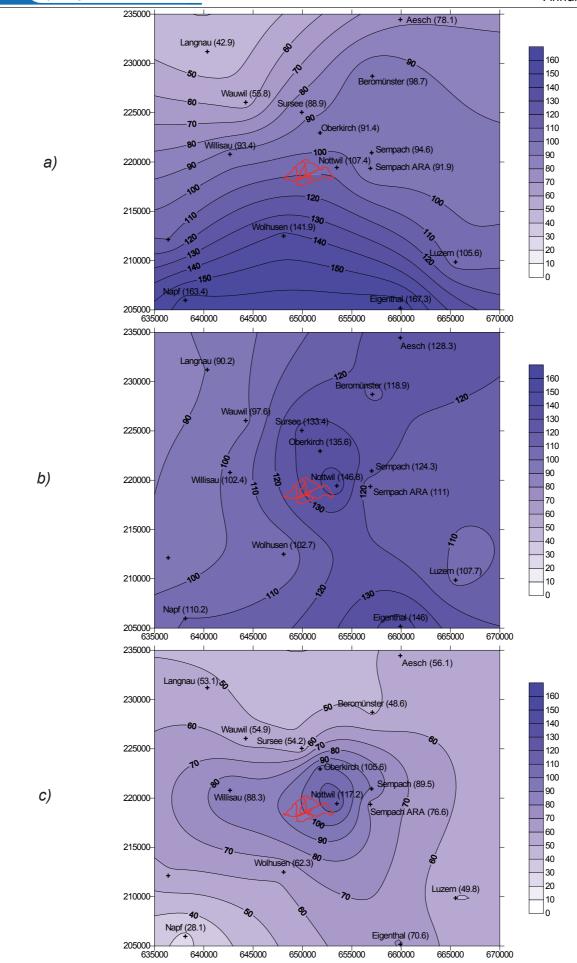
Datum	Nieder- schlag	Angaben zum Ereignis	Quelle
2010, 29.07.	Dauerregen	Starke, andauernde Regenfälle führten im Kt. Luzern zu überschwemmten Strassen und Feldern. Rund 20 Feuerwehren standen im Einsatz. Bis am Abend des 29.7.2010 gingen bei der Gebäudeversicherung rund 50 Schadensmeldungen ein. Die Polizei verzeichnete etwa 200 Anrufe. Besonders betroffen war das Luzerner Hinterland, das Rottal, das Wiggertal und das Seetal. Teilweise wurden auch Verkehrswege unterbrochen - so auch in Buttisholz . Dort hat der Dorfbach das Zentrum überschwemmt, woraufhin die Strasse 2 h gesperrt war. Die Feuerwehr setzte Beaverschläuche ein. Zudem musste in der Arigstrasse das Wasser über die Strasse abgeleitet werden.	WSL (2015)
		In einigen Regionen des Kantons Luzern goss es am Vormittag [29.7.2010] wie aus Kübeln. Mehrere Bäche traten über die Ufer. Schäden gab es vor allem im Luzerner Hinterland sowie im Rot-, im Wigger- und im Seetal, wie die Luzerner Polizei und das Feuerwehr-Inspektorat mitteilten. Anfang Nachmittag entspannte sich die Lage. () Gesperrt war unter anderem das Dorfzentrum von Buttisholz , weil dort der Dorfplatz unter Wasser stand. Die BLS-Bahnlinie Wolhusen-Langenthal zwischen Willisau LU und Gettnau LU war während gut zweieinhalb Stunden nicht befahrbar. () Je 33 Liter wurden in der Stadt Luzern, in Wädenswil ZH am ZürichsFee sowie auf dem Hörnli im Zürcher Oberland registriert. Weiter westlich waren die Regenmengen deutlich kleiner. Phasenweise hagelte es auch, wie Hayoz weiter sagte. Betroffen waren das Entlebuch und das Napfgebiet in der Zentralschweiz sowie ein Band im Norden des Landes, das vom Baselbiet über den Aargau bis in die Ostschweiz reichte.	
		Rund 20 Feuerwehren standen am Donnerstagvormittag im Einsatz, weil Bäche über die Ufer getreten und Schächte die Wassermassen nicht mehr aufnehmen konnten. Laut Luzerner Polizei waren einige Verkehrswege teilweise unterbrochen. Bei der Einsatzleitzentrale gingen rund 70 Meldungen ein. Die starken Regenfälle vom Donnerstagvormittag konzentrierten sich aufgrund der Alarmeingänge grossmehrheitlich auf das Luzerner Hinterland, das Rottal, das Wiggertal und das Seetal. Folgende Feuerwehren sind im Einsatz: Altishofen-Nebikon, Buttisholz , Ebersecken, Ettiswil-Alberswil, Gettnau, Grosswangen, Hochdorf, Hürntal, Luzern, Michelsamt, Nottwil, Oberseetal, Region Sursee, Ruswil, Schötz, Wiggertal, Wikon, Triengen, Willisau, Grossdietwil-Albüron, Luthern und Zell. Die Strassen Grosswangen-Kottwil, Grosswangen-Oberkirch, Willisau-Alberswil und das Dorfzentrum von Buttisholz waren schwierig zu befahren oder teilweise gesperrt.	Neue Luzerner Zeitung, zisch.ch 29.7.2010
		Schweikhüserebächli: Überlast fliesst über den Hang auf das Quartier Sebaldematt zu und wird oberhalb abgeleitet. Arigbächli: Überlastung des Arigbächlis.	OekoB (2010)
2011, 13.07.	Gewitter	Im Kanton Luzern wurden vor allem die Gemeinden Reiden und Wikon im Wiggertal vom Gewitter heimgesucht. Umstürzende Bäume beschädigten Häuser und einen Lastwagen. Aus dem ganzen Kantonsgebiet riefen rund zwei Dutzend Personen Feuerwehr und Polizei zu Hilfe. Die Feuerwehr Buttisholz verzeichnete einen Wassereinbruch als Folge des Unwetters an der St. Ottilienstrasse.	WSL (2015)

Anhang 1: Dokumentierte Hochwasser . Seite 5 von 7

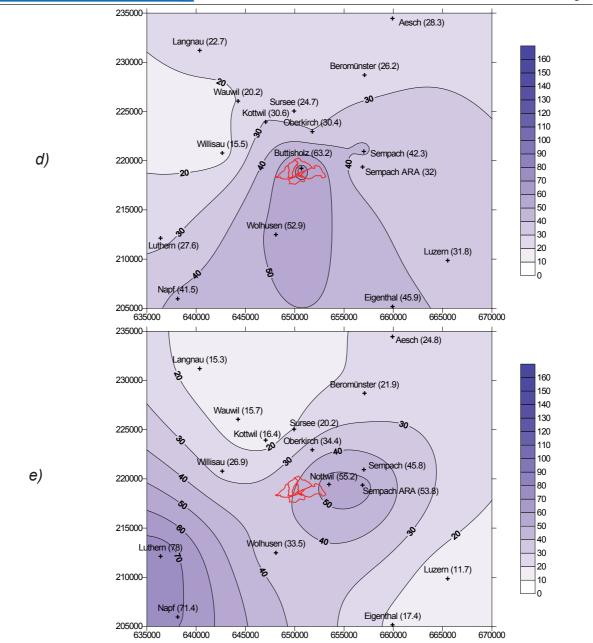
Datum	Nieder- schlag	Angaben zum Ereignis	Quelle
2013, 02.07.		Zwischen 17:30 und 18: Uhr zog ein kräftiges Hagelunwetter über die Region Nottwil-Buttisholz-Wolhusen. In den am stärksten betroffenen Regionen fielen rund 50 Millimeter Niederschlag. Die Feuerwehren in der Region standen im Grosseinsatz, pumpten Dutzende Keller leer und sorgten für Umleitungen, wo Wasser den Durchgangsverkehr behinderte und Bäche über die Ufer traten. 65 Feuerwehrleute mussten notfallmässig in Buttisholz ausrücken, um Keller auszupumpen und Strassenüberschwemmungen zu beheben. Der Horütibach vermochte die schnell ansteigenden Wassermassen nicht mehr zu schlucken. Bereits unterhalb des Fürtiwaldes wurden Gebäude, Land und Strassen überflutet. Beim Wohnzentrum Primavera floss das Wasser dann knietief über den Fussweg beim Mühlefeld in die Arigstrasse und weiter Richtung Hinterdorf. Die Feuerwehr schottete den Zugang zum Hinterdorf mit wasserbefüllten Kissen ab und schützte auch die tiefer liegenden Häuser und Garagen. Einige Keller und Garagen mussten ausgepumpt werden, unter anderem auch in der Bösgass. Kurze Zeit später war das Wasser abgeflossen und hinterliess viel Schlamm, Holz und sichtbare Schäden an Pflanzen, Feldern, Autos und Gebäuden. Zusätzlich verstopften die grossen Hagelkörner viele Schächte, was die ganze Situation zusätzlich noch verschärfte. Über 30 Keller und Räume wurden Opfer der Wassermassen. Aus der Region Nottwil und Buttisholz wurden je fünfzig zum Teil schwere Überschwemmungs- und Hagelschäden bei der Gebäudeversicherung gemeldet. Man rechnete aber mit total rund 400 bis 500 Schadenmeldungen. Die Schadensumme wurde auf 2 bis 2,5 Millionen Franken geschätzt. Der Gebäudeversicherung wurden vor allem überschwemmte Keller gemeldet. Teilweise nahmen durch das Wasser auch Heizungseinrichtungen Schaden. (Anmerkung: Annahme, dass auch viele Hagelschäden, nicht ganz klar wie viele Hagel- und Überschwemmungsschäden).	WSL (2015)
		Die Gemeinde Buttisholz wurde beim grossen Gewitter am vorletzten Dienstag mit massivem Hagelschlag arg in Mitleidenschaft gezogen. () Unglaublich, mit welchen Wassermassen die Gemeinde Buttisholz beim grossen Gewitter von letzter Woche konfrontiert wurde! Zusätzlich verstopften die grossen Hagelkörner viele Schächte, was die ganze Situation zusätzlich noch verschärfte. Zahlreiche Keller musste ausgepumpt werden. Die Feuerwehr war umgehend vor Ort und konnte mit Sofortmassnahmen viel dazu beitragen, dass sich die Gebäudeschäden in Grenzen gehalten haben. Da in der Gemeinde Buttisholz Hochwasser regelmässig auftreten, sind viele Grundstückeigentümer gerüstet gewesen und haben mit mobilen Objektschutzdämmen die Wassermassen grösstenteils abwehren können. Trotzdem wurden über 30 Keller und Räume Opfer der Wassermassen. Ein grosses Lob gehört nebst der Feuerwehr den vielen freiwilligen Helfern, welche sich umgehend an die Aufräumarbeiten gemacht haben. Hier hat sich einmal mehr gezeigt, dass die Buttisholzer sich gegenseitig unterstützen.	
		Wetterlage: Am Nachmittag des 2. Juli 2013 bildeten sich vor allem in der Zentralschweiz und im Jurabogen mehrere Gewitterzellen. Um ca. 17.20 Uhr entlud sich ein heftiges Hagelgewitter von Südwesten her kommend über den beiden Gemeinden Buttisholz (Schwerpunkt der Niederschläge ab Dorfzentrum Richtung Süden und Osten) sowie Nottwil (Schwerpunkt der Niederschläge im Südwesten der Gemeinde). Das Gewitter war begleitet durch intensiven Hagel, beispielsweise waren die Hänge östlich des Dorfzentrums Buttisholz für Stunden schneeweiss bedeckt.	OekoB (2013)
		Niederschlagsmengen: Anhand der Messdaten auf der Gemeinsamen Informationsplattform Naturgefahren (GIN) wurden die Niederschlagsmengen für das Ereignis hergeleitet. Das Niederschlagsradar zeigt, dass die Gewitterzelle um	

Anhang 1: Dokumentierte Hochwasser . Seite 6 von 7

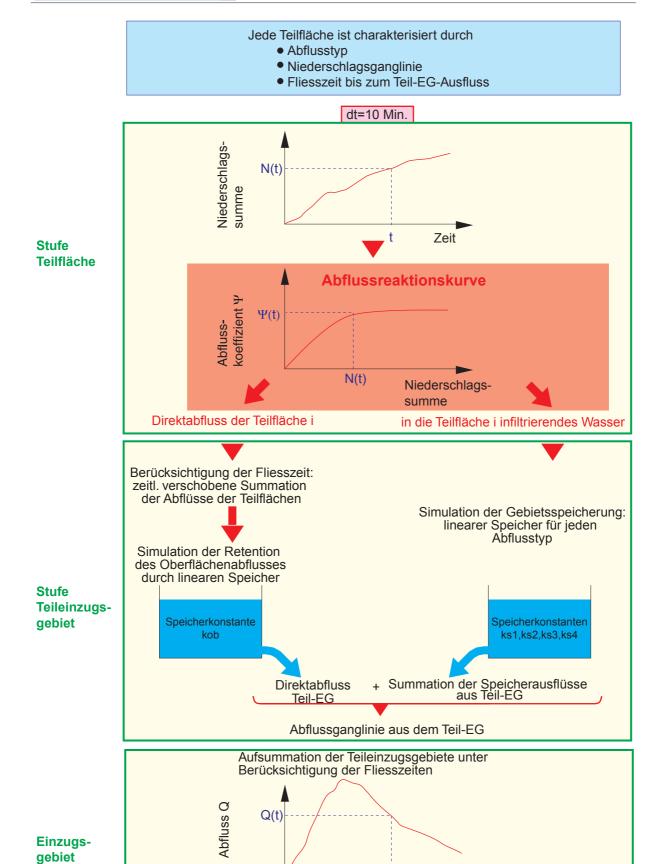
Datum	Nieder- schlag	Angaben zum Ereignis	Quelle
		17.30 Uhr eine Niederschlagsintensität von über 40 mm/h erreichte. Eine Auswertung der Messdaten durch das Pikett Naturgefahren vif ergab einen Spitzenwert von 14 mm/10 min. Das Gewitter war äusserst lokal, so dass ein Beizug von Messstellen in der Umgebung nicht aussagekräftig ist. Zur Verdeutlichung eine Aussage aus Buttisholz: Während es im Gebiet Gustibergstrasse (nördlicher Dorfteil) erste Tropfen gab, kam der Anruf, dass es im gut 1 Kilometer entfernten Gebiet Fürti (östlicher Dorfteil) bereits zu Überschwemmungen und Schäden gekommen sei. Das Unwetter war insgesamt von kurzer Dauer. Jedoch führten die intensiven Niederschläge zu gleichzeitigem Auftreten von Gerinneüberlastungen, Hangwasser sowie Oberflächenwasser direkt im Siedlungsgebiet. Die grossen Mengen von Hagelkörnern verursachten an vielen Stellen Verstopfungen von Schachten, Durchlassen und Rechen.	
		Über 30 Keller und Räume wurden in Buttisholz beim Unwetter vom 2. Juli dieses Jahres geflutet. Das sollte ab sofort nicht mehr passieren, weil das Hochwasserrückhaltebecken nun in Betrieb ist.	Neue Luzerner Zeitung, 11.12.2013
		Rückstau bei der Eindolung Zihl. Wasser erreichte jedoch die Hauptstrasse nicht. Überschwemmung Fürti: Überflutung des Quartiers durch Oberflächenwasser aus dem obliegenden Hang und versiegelten Flächen im Quartier. Überschwemmung Hohrütibach/Dorfbach: Gerinne und Durchlässe zu klein für Wasser aus Bach und zusätzliches Oberflächenwasser. Wasserableitung entlang Weg "Mühlefeld" hat grösstenteils funktioniert. Z-T. Konnten Wasserableitung nicht rechtzeitig erstellt werden, z. T. wurden sie leicht überflossen. Buttisholz Mülibechli: Hinderdorf, Bösgass, Arigstrasse. 2 Wohnhäuser, Tiefgarage Altersheim und Stall von Wasser Mülibechli betroffen. Dann Zusammenfluss mit ausgetretenem Dorfbach. Strassenunterbrüche. Niederschlag: Starkregen mit Hagel: 14 mm/10 min.	Luzern, StorME- Nr. 2013-W- 0007-9
2014, 12.06.		Mülibechli droht über Ufer zu treten (Ort: Bösgass)	Feuerwehr But- tisholz (2015)

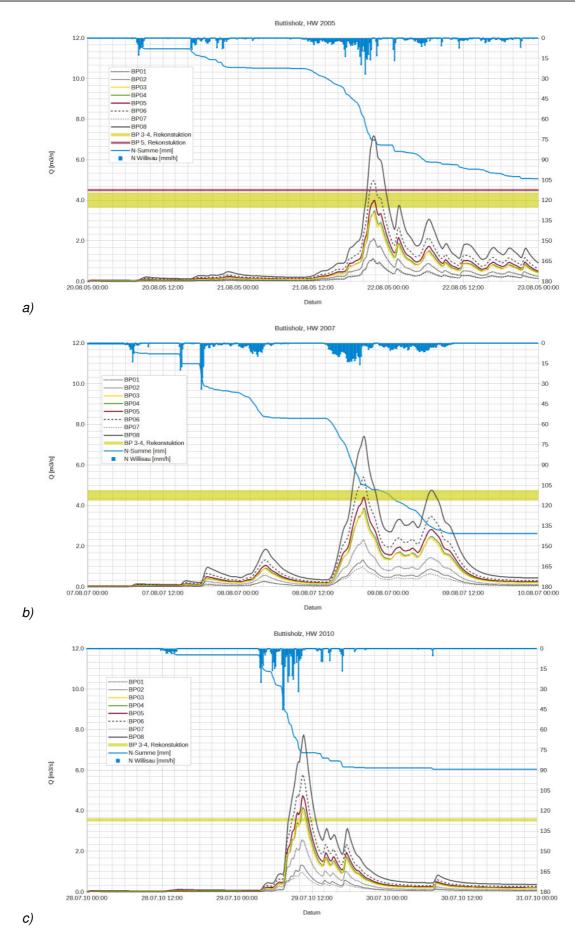

Anhang 1: Dokumentierte Hochwasser . Seite 7 von 7

5-jährlich 10-jährlich 20-jährlich 50-jährlich 100-jährlich



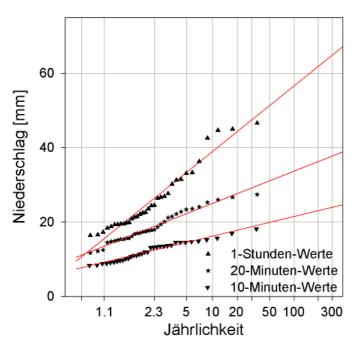
Nr.	4590	4680	6475	6630	6648	6651	6800	6816	6840	6880	LU 04	LU 05	LU 07	LU 08	LU 09	Agrometeo	Agrometeo	Agrometeo	Strassenwetter
Station	Luzern	Eigenthal	Napf	Luthern	Wauwil, bis 1973 Wauwiler moos	Egol- zwil	Sempach	Triengen	Bero- münster	Aesch (LU) bis 1928 Hitzkirch	Sem-pach ARA	Sursee	Langnau (LU)	Willisau	Wol- husen	Kottwil	Nottwil	Oberkirch	Buttisholz
Messperiode	1878 -	1882 -	1978 -	1883-1889, 1900 -	1961 -	2014 -	1961 -	1883 - 1919	1882 -	1901 -	1991 -	2000 -	2000 -	1991 -	2000 -	2009 -	2003 -	2004 -	2010 -
X Y	665520 209860	659920 205170	638130 205970	636390 212130	644250 226050	642913 225540	657010 220940	648300 231770	657080 228700	659915 234450	656880 219360	649930 225040	640360 231200	642650 220780	648090 212490	647052 223932	653478 219435	651782 222952	650680 219220
Zeitintervall Statistik	7-7 Uhr 1881-2010	7-7 Uhr 1883-2008	7-7 Uhr 1978-2011	7-7 Uhr 1910-1977	7-7 Uhr keine	7-7 Uhr keine	7-7 Uhr 1961 - 1987	7-7 Uhr keine	7-7 Uhr 1888 - 2009	7-7 Uhr 1901 - 1987	7-7 Uhr keine	7-7 Uhr keine	7-7 Uhr keine	7-7 Uhr keine	7-7 Uhr keine	7-7 Uhr keine	7-7 Uhr keine	7-7 Uhr keine	7-7 Uhr keine
09.06.1912 10.06.1912	7.0 0.0	4.2 0.0		6.4 0.0				11.0 0.0	12.0 0.0	18.0 0.0									
11.06.1912 12.06.1912	0.0 1.4	0.0 4.3		0.0 6.7				0.0 4.6	0.0 9.5	0.0 11.1									
13.06.1912 14.06.1912	78.0 0.1	111.4 0.9		61.5 0.0				88.0 0.0	62.2 0.0	59.7 0.0									
1213.06.1912 25.05.1935	79.4 20.9	115.7 10.5		68.2 39.4				92.6	71.7 35.2	70.8 27.8									
26.05.1935 27.05.1935	3.9	0.7 2.0		1.5					3.2 9.2	0.0 7.8									
28.05.1935	9.1 3.6	21.6		1.6					1.3	10.2									
29.05.1935 30.05.1935	17.6 8.1	29.4 20.6		32.6 16.4					37.0 7.7	5.6 12.5									
22.06.1953 23.06.1953	9.1 3.6	12.1 6.1		6.0 6.0					21.4 5.4	9.1 6.0									
24.06.1953 25.06.1953	13.3 36.7	17.6 44.7		15.6 16.2					11.6 47.1	9.0 52.0									
26.06.1953 27.06.1953	34.0 1.7	68.3 4.2		38.4 6.5					40.6 1.8	37.6 0.9									
2526.06.1953 2426.06.1953	70.7 84.0	113.0 130.6		54.6 70.2					87.7 99.3	89.6 98.6									
18.11.1972 19.11.1972	4.1 0.0	3.0 0.0		0.1 4.2	0.0 7.0		3.1 1.6		21.7 8.6	0.0 2.3									
20.11.1972 21.11.1972	6.7 35.9	16.3 51.3		11.4 42.0	2.0 42.0		6.4 33.6		8.4 35.5	8.5 35.5									
22.11.1972 23.11.1972	81.6 11.1	84.7 9.8		50.0 5.2	86.0 0.0		77.9 4.5		68.5 5.1	71.9 1.7									
2122.11.1972 2022.11.1972	117.5 124.2	136.0 152.3		92.0 103.4	128.0 130.0		111.5 117.9		104.0 112.4	107.4 115.9									
27.08.1975 28.08.1975	0.0	0.0		0.0	0.0		0.0		0.0	0.0 0.0									
29.08.1975 30.08.1975	60.0 0.7	78.9 3.2		40.4 0.1	31.3 3.7		36.2 10.1		26.4 1.2	16.9 1.2									
06.08.1978 07.08.1978	7.9 106.7	7.5 135.8	11.2 79.6	0.1	15.5 58.5		13.1		18.1 85.4	15.9 79.0									
08.08.1978 0607.08.1978	3.8 114.6	6.7 143.3	12.9 90.8		8.7 74.0		7.4 96.9		14.6 103.5	8.5 94.9									
0608.08.1978 16.06.1986	118.4 0.8	150.0	103.7	19.2	82.7 12.5		104.3 7.6		118.1	103.4 23.3									
17.06.1986	22.2	13.7 10.2	3.2	8.7	3.1		15.6		6.4	5.1									
18.06.1986 19.06.1986	0.0	0.2	11.4 0.0	27.5 0.0	0.2		0.1 0.0		12.4 0.0	1.1 0.0									
20.06.1986 15.05.1994	3.7 0.0	0.0	0.0	3.8 0.0	0.0		5.8 0.0		21.6 0.0	36.6 0.0	0.0		0.0	0.0					
16.05.1994 17.05.1994	0.6 10.7	12.6 20.9	2.8 10.1	7.2 20.5	1.5 23.9		0.8 17.8		1.5 30.0	3.1 21.4	0.8 17.8		10.4 13.9	5.7 29.3					
18.05.1994 19.05.1994	61.7 8.1	66.7 8.0	90.7 12.9	78.4 10.0	52.8 6.5		75.8 7.5		92.0 16.9	9.3	73.6 6.6		59.6 8.8	52.6 4.0					
20.05.1994 1718.05.1994	7.3 72.4	17.6 87.6	9.2 100.8	4.3 98.9	5.0 76.7		9.7 93.6		8.1 122.0	7.8 108.1	8.6 91.4		5.4 73.5	7.6 81.8					
1719.05.1994 04.06.2003	80.5 0.6	95.6 0.5	113.7 0.0	108.9 0.0	83.2 0.0		101.1 0.0		138.9 0.0	0.0	98.0 0.0	0.3	82.3 0.0	85.8 5.8	0.0				
05.06.2003 06.06.2003	25.1 9.1	48.9 19.0	23.0 3.4	39.8 3.5	7.8 1.0		15.0 2.0		10.5 0.5	8.7 0.8	14.3 1.8	8.6 0.3	3.2 0.2	10.0 2.0	10.5 2.0				
07.06.2003 08.06.2003	0.2 11.9	0.2 4.2	22.3 8.4	0.2 17.2	0.0		27.0 10.5		1.4 13.2	1.5 7.0	17.4 11.6	0.0 2.0	0.0 0.9	0.0 1.5	37.5 20.9				
19.08.2005 20.08.2005	23.6 24.5	37.7 65.0	21.5 36.7	19.3 22.1	36.1 10.1		35.5 24.4		27.0 18.1	16.3 15.1	27.5 22.3	22.8 15.2	31.5 5.6	17.1 10.1	16.2 47.8		25.0 24.8	18.4 22.0	
21.08.2005 22.08.2005	81.1 25.9	102.3 111.5	126.7 50.9	87.8 58.1	45.7 15.5		70.2 15.3		80.6 10.0	63.0 7.9	69.6 12.1	73.7 10.9	37.2 16.4	83.3 14.7	94.1 16.7		82.6 23.6	69.4 13.4	
23.08.2005 2021.08.2005	0.0	0.0	0.0	0.2	0.5 55.8		0.0 94.6		0.0 98.7	0.3 78.1	0.0	0.0	0.4 42.9	0.1 93.4	0.3 141.9		0.0 107.4	0.0 91.4	
1921.08.2005 07.08.2007	129.2 50.7	205.0 69.7	184.9	129.2 31.3	91.9 21.6		130.1 48.3		125.7 40.9	94.4 37.8	119.3 46.5	111.7	74.4	110.5	158.2		132.4 53.2	109.8	
08.08.2007 09.08.2007	57.0	76.3 2.8	72.5	60.2	76.0		76.0		78.0	90.5	64.5	80.3 5.1	70.5	73.9 5.0	67.5		93.6 4.8	87.2 2.2	
10.08.2007 10.08.2007 0708.08.2007	4.6 0.8 107.7	1.8 146.0	13.6 1.3 110.2	7.5 1.6 91.5	7.3 3.3 97.6		6.7 2.0 124.3		8.1 2.5 118.9	5.3 2.6 128.3	3.0 1.2 111.0	2.6 133.4	6.6 2.6 90.2	2.5 102.4	3.6 0.7 102.7		0.8 146.8	1.8 135.6	
0709.08.2007	112.3	148.8	123.8	99.0	104.9		131.0		127.0	133.6	113.9	138.5	96.9	107.4	106.3	0.0	151.6	137.8	0.1
27.07.2010 28.07.2010	0.0 14.7	1.9 16.3	0.1 8.6	0.0 19.2	0.0 20.3		0.0 35.0		0.0 22.2	0.0 32.4	0.9 27.5	0.0 22.7	0.0 30.7	0.0 27.7	0.0 19.9	0.0 12.4	3.0 58.6	0.0 40.0	0.1 9.1
29.07.2010 30.07.2010	35.1 2.2	54.3 1.4	19.5 0.1	39.0 0.0	34.6 0.0		54.5 0.0		26.4 1.3	23.7 1.2	49.1 1.1	31.5 0.5	22.4 0.2	60.6 1.0	42.5 1.3	0.6 0.0	58.6 2.2	65.6 0.2	34.9 0.0
2829.07.2010 2830.07.2010	49.8 52.0	70.6 72.0	28.1 28.2	58.2 58.2	54.9 54.9		89.5 89.5		48.6 49.9	56.1 57.3	76.6 77.7	54.2 54.7	53.1 53.3	88.3 89.3	62.3 63.6	13.0 13.0	117.2 119.4	105.6 105.8	44.0 44.0
10.07.2011 11.07.2011	13.1 0.0	9.7 0.0	10.6 0.0	4.4 0.0	4.0 0.0		7.5 0.0		8.0 0.0	4.5 0.0	7.7 0.0	3.6 0.0	3.8 0.0	3.5 0.0	6.2 0.0	4.4 0.0	6.8 0.0	7.0 0.0	6.7 0.0
12.07.2011	15.9 26.4	7.1 37.2	31.5 31.2	27.1 20.0	20.0 19.5		35.0 29.0		19.3 26.4	13.3 24.1	25.9 25.8	20.6 22.0	18.4 17.6	27.2 17.8	31.8 19.5	36.8 23.6	25.4 28.0	32.6 25.8	24.6 28.6
01.07.2013 02.07.2013	0.0 5.2	0.0 15.9	0.0 5.1	1.1	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0 49.0
03.07.2013	26.6	30.0	36.4	27.2	20.0		25.7		25.6	24.5	21.4	24.1	22.4	15.3	18.9	29.4	25.6	29.0	14.2
0203.07.2013 09.06.2014	31.8 15.7	45.9 0.2	41.5 0.0	27.6 0.0	0.0		42.3 0.0		26.2 0.0	28.3 0.5	0.0	0.0	0.0	15.5 0.0	52.9 0.0	30.6 0.0	0.0	0.0	63.2 0.4
10.06.2014 11.06.2014	3.6 0.0	0.0 0.0	0.0 0.0	0.0 0.0	2.2 0.0		4.0 0.0		7.5 0.0	0.2 0.0	4.6 0.0	4.8 0.0	0.8 0.0	0.2 0.0	0.0 0.0	0.2 0.0	6.4 0.0	6.2 0.0	5.3 0.0
12.06.2014 20.07.2014	37.3 11.9	36.3 11.2	24.6 25.4	39.5 23.3	1.6 30.6		14.2 17.4		12.7 14.2	17.8 14.8	16.5 18.5	2.7 21.7	16.0 29.6	0.9 28.9	30.4 8.9	2.4 24.6	15.8 26.0	9.2 25.4	21.6 22.1
21.07.2014 22.07.2014	38.0 18.0	79.1 18.6	37.8 33.3	16.9 22.8	27.8 22.1		33.5 22.6		27.7 24.2	29.1 29.0	30.4 20.1	35.4 22.3	20.8 19.1	27.0 16.2	33.4 19.4	13.4 0.0	35.4 24.8	45.0 23.8	20.1 14.8
23.07.2014	0.0	0.0	0.1 0.1	0.0	0.0		0.0		0.0	0.1 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1 0.2
25.07.2014	2.7	4.3	2.7	0.0	2.7		4.0		0.0	0.0	6.3	7.7	1.1	1.4	2.5	2.8	11.8	7.6	3.4
26.07.2014 27.07.2014	10.3	16.7 0.0	19.0 0.0	9.6 0.0	2.7 0.0		3.7 0.0		2.8 0.0	4.9 0.1	2.6 0.0	2.0 0.0	0.0	2.9 0.2	4.8 0.0	3.2 1.4	4.4 0.0	1.6	3.6 0.0
28.07.2014 29.07.2014	11.7 0.8	17.4 5.0	71.4 5.6	78.0 3.5	15.7 3.1		45.8 2.7		21.9 2.2	24.8 1.9	53.8 1.4	20.2 2.1	15.3 2.1	26.9 2.4	33.5 1.5	16.4 1.0	55.2 0.8	34.4 1.0	21.8 1.0
30.04.2015 01.05.2015	3.8 38.5	15.2 40.1	13.3 69.0	13.9 58.9		13.9 54.7	8.8 42.7		11.5 14.8	13.9 53.2	8.1 39.3	12.3 53.0	20.1 64.9	13.8 47.0	5.8 39.1	18.6 14.2	11.4 43.4	14.0 51.0	1.7 19.1
02.05.2015 03.05.2015	15.3 34.1	17.8 49.4	20.8 36.5	15.0 22.3		14.4	17.5 18.8		21.8 19.8	22.6 18.3	15.4 18.5	14.6 18.7	16.0 16.5	18.4 17.7	13.3 21.3	6.0	17.4 19.8	24.8 21.4	4.2 5.9
04.05.2015	0.5	0.0	1.5	1.8		2.4	1.3		2.2	1.6	0.9	1.6	2.7	2.0	1.1	0.0	1.0	1.6	0.8
05.05.2015	14.3	26.7	30.0	28.7		22.2	31.5		39.2	33.6	27.4	31.6	24.9	16.1	32.9	4.6	40.2	45.2	20.9

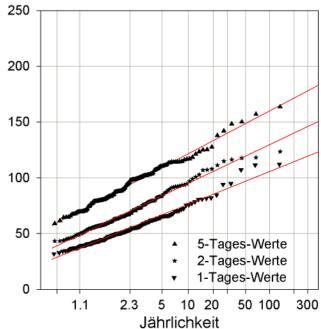

Anhang 2: In der Umgebung von Buttisholz während grosser Hochwasser gemessene Niederschlagsmengen. 5-jährliche und seltenere Werte sind speziell markiert.

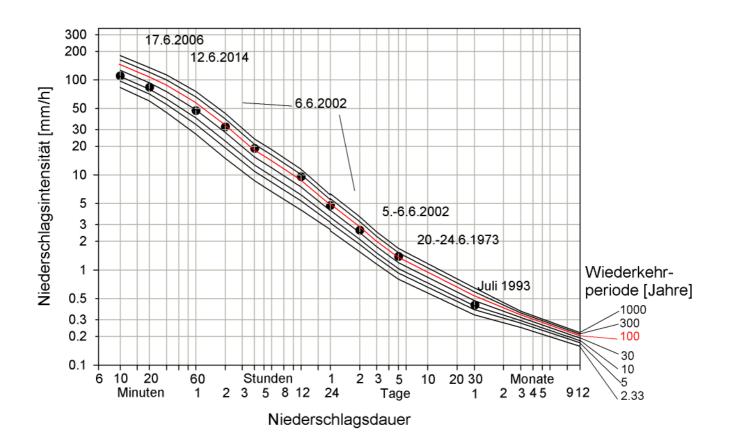

Anhang 3: Niederschlagsverteilung am a) 20.-21.8.2005, b) 7.-8.8.2007, c) 28.-29.7.2010. (Niederschlag in mm).

Anhang 4: Schematischer Aufbau des Niederschlags-Abfluss-Modells QAREA. Zentrales Element ist die Abflussreaktionskurve, die für jede Teilfläche die Beziehung zwischen Niederschlagssumme und Abflusskoeffizient beschreibt.

Anhang 5: Modellverifikation a) 21./22.8.2005, b) 8.8.2007, c) 29.7.2010.




Luzern 1880 - 2014


Regen und Schnee berücksichtigt

- 1. Extremalverteilung: 10-Min 12-Stunden-Maxima
- 1. Extremalverteilung: 1-, 2-, 3- und 5-Tages-Maxima

Normalverteilung: 3-Monats- u. Jahres-Maxima

Anhang 6.1: Die analog zu Zeller et al. (1978) erstellte Starkniederschlagsstatistik für die Station Luzern (1880 - 2014).

Luzern 1880 - 2014

Regen und Schnee berücksichtigt

1. Extremalverteilung: 10-Min - 12-Stunden-Maxima

1. Extremalverteilung: 1-, 2-, 3- und 5-Tages-Maxima

Normalverteilung: 3-Monats- u. Jahres-Maxima

Die für die Diagramme verwendeten 10 grössten Niederschlagswerte Datengrundlage: 1-Tages-Werte 1880 - 2014

пg	1 - Tag		2 - Tage		5 - Tage		1	- Mor	nat	3 - Monate			1 - Jahr	
Rang	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]	Da	tum	N [mm]	Datu	m	N [mm]	Datum	N [mm]
1	06.06.2002	112	0506.06.2002	123	20.0624.06.1973	163	Juli	1993	306	Juli-Sep	1888	675	1910	1666
2	24.08.1944	111	2627.07.1976	118	18.0822.08.2005	157	Juli	1976	304	Juni-Aug	2014	660	1965	1550
3	07.08.1978	107	2122.11.1972	118	22.0726.07.1976	150	Aug	1975	295	Juli-Sep	2010	658	1979	1475
4	05.07.1993	94	2728.09.1954	116	05.0609.06.2002	148	Aug	2005	293	Juni-Aug	1997	648	2001	1472
5	26.07.1976	94	0607.08.1978	115	10.0514.05.1999	142	Aug	1890	292	Juni-Aug	1912	643	1940	1461
6	27.09.1954	84	2324.08.1944	111	06.0610.06.2002	139	Juli	1900	288	Juni-Aug	1927	632	2002	1461
7	22.11.1972	82	0708.08.2007	108	20.1124.11.1972	138	Nov	1972	287	Juni-Aug	1910	632	1999	1449
8	21.08.2005	81	2122.08.2005	107	04.0608.06.2002	134	Juni	1979	284	Mai-Juli	1914	629	1922	1436
9	14.06.1910	81	2223.06.1973	107	18.0122.01.1910	127	Juli	1955	283	Juni-Aug	1993	629	1905	1427
10	23.06.1973	80	2930.07.1900	103	26.0930.09.1954	125	Juni	1912	280	Juni-Aug	1946	629	1995	1426

Die für die Diagramme verwendeten 10 grössten Niederschlagswerte Datengrundlage: 10-Minuten-Werte 1981 - 2014

ng	10 Mir	۱.	20 Mir	n.	1 h		4 h		
Rang	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]	
1	17.06.2006	18.0	12.06.2014	27.3	06.06.2002	46.5	06.06.2002	74.4	
2	14.07.1997	16.8	23.06.1993	26.6	23.06.1993	44.9	16.06.1988	57.3	
3	12.06.2014	15.5	20.08.2001	25.9	16.06.1988	44.6	23.06.1993	54.9	
4	10.07.2010	15.1	16.06.1988	25.2	24.06.1981	42.5	10.08.1994	48.5	
5	23.06.1993	14.7	17.06.2006	24.0	02.08.1996	36.2	02.08.1996	47.6	
6	07.08.1989	14.6	01.08.2010	23.5	21.07.1992	33.2	24.06.1981	45.1	
7	16.06.1988	14.4	24.06.1981	23.3	12.06.2014	33.0	21.08.2005	39.0	
8	06.06.2002	14.4	06.06.2002	22.7	17.06.2006	31.4	10.08.2014	38.9	
9	28.07.2009	14.4	11.09.2011	22.1	01.08.2010	31.2	24.06.1992	38.5	
10	11.09.2011	13.6	21.08.1992	21.4	10.08.1994	30.1	19.08.2008	36.1	

Luzern 1880 - 2014

Regen und Schnee berücksichtigt

1. Extremalverteilung: 10-Min - 12-Stunden-Maxima

1. Extremalverteilung: 1-, 2-, 3- und 5-Tages-Maxima

Normalverteilung: 3-Monats- u. Jahres-Maxima

Interpolierte bzw. extrapolierte Niederschlagsintensitäten in mm/h für ausgewählte Jährlichkeiten und Niederschlagsdauern

Niederschlagsdauer	0.5h	1h	2h	4h	6h	8h	12h	24h	2d	3d	5d	1mt	3mt	1yr
Jährlichkeit														
2.33	45	27	15	8.7	6.7	5.5	4.3	2.6	1.6	1.1	0.8	0.34	0.25	0.16
5	55	34	19	10.9	8.4	6.9	5.3	3.1	1.9	1.3	0.9	0.38	0.28	0.17
10	63	40	23	12.7	9.8	8.1	6.2	3.6	2.1	1.5	1.0	0.42	0.29	0.18
20	71	45	26	14.4	11.1	9.2	7.0	4.0	2.3	1.7	1.1	0.46	0.31	0.19
30	75	49	28	15.4	11.9	9.8	7.5	4.3	2.5	1.8	1.2	0.48	0.32	0.19
50	81	52	30	16.7	12.9	10.6	8.1	4.6	2.6	1.9	1.3	0.50	0.33	0.20
100	88	58	34	18.4	14.2	11.7	8.9	5.0	2.9	2.0	1.4	0.54	0.34	0.20
200	96	63	37	20.0	15.5	12.7	9.7	5.4	3.1	2.2	1.5	0.57	0.35	0.21
300	100	66	39	21.0	16.2	13.3	10.1	5.6	3.2	2.3	1.5	0.59	0.35	0.21
500	106	70	41	22.2	17.2	14.1	10.7	5.9	3.4	2.4	1.6	0.62	0.36	0.21
1000	113	76	44	23.9	18.5	15.2	11.5	6.4	3.6	2.5	1.7	0.65	0.37	0.22

Bemerkungen:

Werte für Dauern ab 24 h hergeleitet aus Tageswerten der Station Luzern

- durchgehende Daten der Station Luzern 1.8.1880 - 31.12.2014

Werte für Dauern < 24 h hergeleitet aus 10-Minuten - Werten der A-Netz Station Luzern

- Daten der A-Netz-Station Luzern 1981 2014
- Werte vom 9.1.1985 offensichtlich fehlerhaft, daher nicht berücksichtigt

Wiederkehr- periode	Bezeichnung des Niederschlags	Niederschlags- szenario	,	Abflusss	pitzen [r	m³/s] be	i den Be	rechnun	gspunkte	en	Becken- füllung [m³]
[Jahre]			BP 1	BP 2	BP 3	BP 4	BP 5	BP 6	BP 7	BP 8	Vol HRB
	0.5h30j_dreieck	Dreieck	0.7	1.4	2.1	2.2	2.9	4.4	1.6	7.1	5200
	1h30j_dreieck	Dreieck	0.8	2.0	2.9	3.0	4.0	6.0	2.0	9.9	9400
	2h30j_dreieck	Dreieck	0.8	1.9	2.8	3.0	4.0	5.9	1.8	9.7	12200
30	4h30j_dreieck	Dreieck	0.8	1.4	2.4	2.5	3.3	4.6	1.3	7.6	13500
	12h30j_block	gleichmässig	1.0	1.4	2.5	2.7	3.3	4.4	1.1	6.7	34600
	24h30j_block	gleichmässig	0.9	1.0	2.0	2.1	2.5	3.2	0.7	4.7	25900
	48h30j_block	gleichmässig	0.8	0.6	1.5	1.6	1.8	2.3	0.5	3.2	11500
	0.5h100j dreieck	Dreieck	0.8	2.2	3.1	3.2	4.3	6.5	2.4	10.5	9100
	1h100j dreieck	Dreieck	0.9	3.3	4.4	4.6	6.1	9.1	3.0	15.0	16500
	2h100j dreieck	Dreieck	0.9	3.1	4.2	4.5	6.0	8.9	2.8	14.7	21400
100	4h100j_dreieck	Dreieck	0.9	2.2	3.3	3.5	4.6	6.6	2.0	11.0	23200
	12h100j_block	gleichmässig	1.0	1.9	3.0	3.2	3.9	5.4	1.4	8.3	51900
	24h100j_block	gleichmässig	1.0	1.2	2.3	2.4	2.9	3.8	0.9	5.6	42100
	48h100j_block	gleichmässig	0.9	8.0	1.8	1.8	2.1	2.7	0.6	3.9	23400
	0.5h300j_dreieck	Dreieck	0.8	3.1	4.1	4.3	5.8	8.6	3.1	14.0	13400
	1h300j dreieck	Dreieck	0.9	4.6	5.9	6.2	8.3	12.3	4.1	20.3	23900
	2h300j dreieck	Dreieck	1.0	4.4	5.7	6.1	8.1	12.0	3.7	19.9	31400
300	4h300j dreieck	Dreieck	1.0	3.1	4.3	4.6	6.0	8.7	2.6	14.4	33800
	12h300j_block	gleichmässig	1.0	2.3	3.5	3.6	4.6	6.3	1.7	9.8	69700
	24h300j_block	gleichmässig	1.0	1.4	2.5	2.6	3.2	4.3	1.0	6.4	59900
	48h300j_block	gleichmässig	1.0	0.9	1.9	2.0	2.4	3.0	0.6	4.4	37000

Anhang 7: a) Beckenberechnungen mit einer variablen Drosselwassermenge, bei vollem Becken 1.0 m³/s.

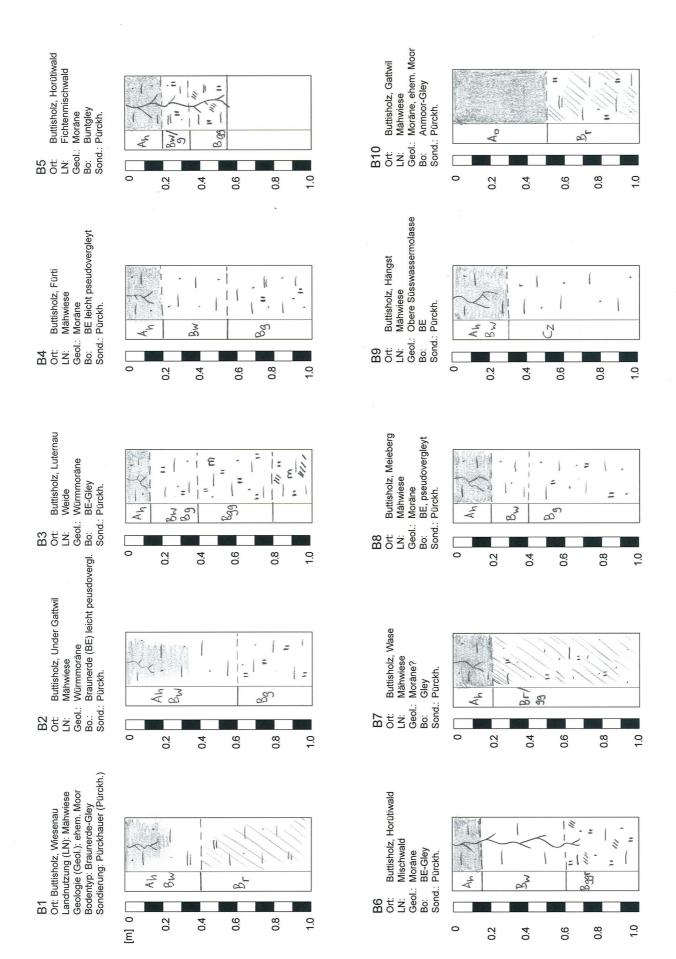
Wiederkehr- periode	Bezeichnung des Niederschlags	Niederschlags- szenario		Abflusss	pitzen [r	m³/s] be	i den Be	rechnun	gspunkte	en	Becken- füllung [m³]
[Jahre]			BP 1	BP 2	BP 3	BP 4	BP 5	BP 6	BP 7	BP 8	Vol HRB
	0.5h30j_dreieck	Dreieck	1.4	1.4	2.7	2.8	3.4	4.6	1.6	7.3	3200
	1h30j_dreieck	Dreieck	1.5	2.0	3.5	3.7	4.6	6.5	2.0	10.4	6400
	2h30j_dreieck	Dreieck	1.6	1.9	3.5	3.7	4.7	6.5	1.8	10.4	8100
30	4h30j_dreieck	Dreieck	1.6	1.4	3.1	3.2	4.0	5.3	1.3	8.2	7600
	12h30j_block	gleichmässig	1.7	1.4	3.3	3.4	4.0	5.1	1.1	7.4	12200
	24h30j_block	gleichmässig	1.4	1.0	2.4	2.5	2.9	3.6	0.7	5.1	3400
	48h30j_block	gleichmässig	1.0	0.6	1.6	1.7	1.9	2.4	0.5	3.4	400
	0.5h100j dreieck	Dreieck	1.5	2.2	3.7	3.8	4.8	6.9	2.4	10.9	6400
	1h100j dreieck	Dreieck	1.7	3.3	5.1	5.3	6.7	9.7	3.0	15.6	12500
	2h100j dreieck	Dreieck	1.8	3.1	5.0	5.3	6.7	9.6	2.8	15.4	16100
100	4h100j dreieck	Dreieck	1.8	2.2	4.1	4.3	5.4	7.4	2.0	11.7	15700
	12h100j_block	gleichmässig	1.9	1.9	3.9	4.1	4.8	6.3	1.4	9.2	23000
	24h100j_block	gleichmässig	1.6	1.2	2.9	3.0	3.5	4.4	0.9	6.2	8800
	48h100j_block	gleichmässig	1.2	0.8	2.0	2.1	2.4	2.9	0.6	4.1	1200
	0.5h300j dreieck	Dreieck	1.7	3.1	4.8	5.0	6.3	9.1	3.1	14.5	10100
	1h300j dreieck	Dreieck	1.9	4.6	6.6	7.0	8.9	13.0	4.1	20.9	19200
	2h300j_dreieck	Dreieck	1.9	4.4	6.5	6.9	8.9	12.7	3.7	20.6	25200
300	4h300j dreieck	Dreieck	1.9	3.1	5.1	5.4	6.9	9.5	2.6	15.2	25000
	12h300j_block	gleichmässig	2.0	2.3	4.5	4.7	5.6	7.3	1.7	10.8	35300
	24h300j_block	gleichmässig	1.8	1.4	3.4	3.5	4.0	5.1	1.0	7.2	16500
	48h300j_block	gleichmässig	1.3	0.9	2.3	2.4	2.7	3.4	0.6	4.8	2600

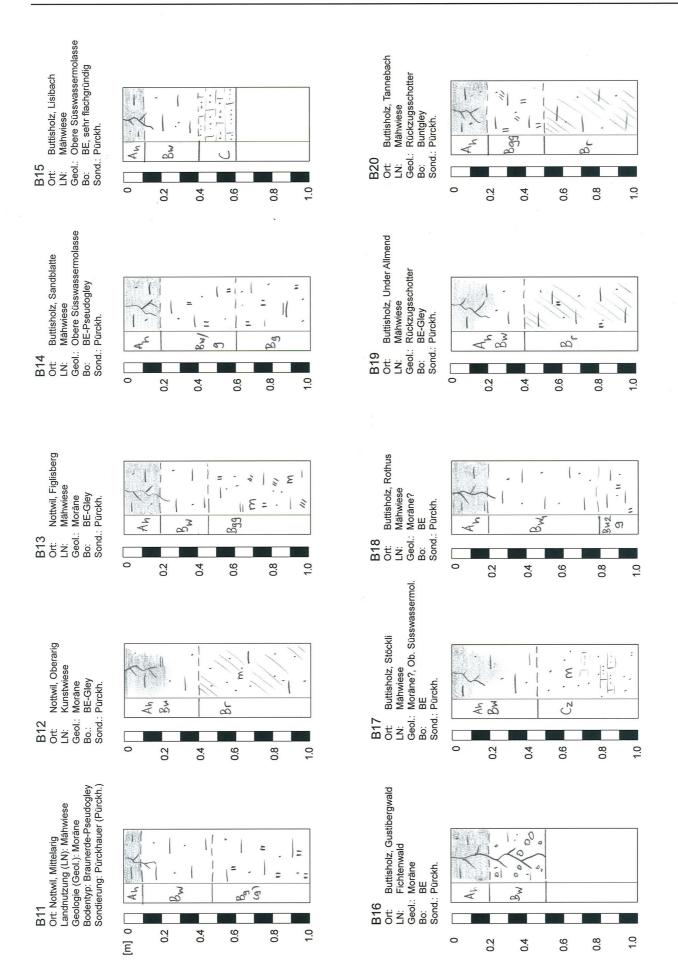
Anhang 7: b) Beckenberechnungen mit einer variablen Drosselwassermenge, bei vollem Becken 2.0 m³/s.

Wiederkehr- periode	Bezeichnung des Niederschlags	Niederschlags- szenario	,	Abflusss	pitzen [r	m³/s] be	i den Be	rechnun	gspunkte	en	Becken- füllung [m³]
[Jahre]			BP 1	BP 2	BP 3	BP 4	BP 5	BP 6	BP 7	BP 8	Vol HRB
	0.5h30j_dreieck	Dreieck	1.9	1.4	3.2	3.3	3.9	5.0	1.6	7.2	2300
	1h30j_dreieck	Dreieck	2.2	2.0	4.0	4.2	5.1	7.1	2.0	11.0	4600
	2h30j_dreieck	Dreieck	2.2	1.9	4.2	4.3	5.2	7.0	1.8	10.9	5700
30	4h30j_dreieck	Dreieck	2.2	1.4	3.6	3.8	4.5	5.8	1.3	8.7	4200
	12h30j_block	gleichmässig	2.1	1.4	3.7	3.8	4.4	5.5	1.1	7.8	3800
	24h30j_block	gleichmässig	1.5	1.0	2.5	2.6	3.0	3.7	0.7	5.2	700
	48h30j_block	gleichmässig	1.0	0.6	1.6	1.7	2.0	2.4	0.5	3.4	400
	0.5h100j dreieck	Dreieck	2.2	2.2	4.2	4.4	5.3	6.8	2.4	10.8	5000
	1h100j dreieck	Dreieck	2.5	3.3	5.7	6.0	7.3	10.3	3.0	16.2	10000
	2h100j_dreieck	Dreieck	2.6	3.1	5.7	6.0	7.4	10.2	2.8	16.1	12600
100	4h100j_dreieck	Dreieck	2.5	2.2	4.8	5.0	6.1	8.1	2.0	12.3	10600
	12h100j_block	gleichmässig	2.5	1.9	4.5	4.6	5.4	6.8	1.4	9.7	9400
	24h100j_block	gleichmässig	1.8	1.2	3.1	3.2	3.7	4.6	0.9	6.4	1800
	48h100j_block	gleichmässig	1.2	0.8	2.0	2.1	2.4	3.0	0.6	4.1	500
	0.5h300j dreieck	Dreieck	2.4	3.1	5.3	5.6	6.7	9.2	3.1	14.6	8200
	1h300j dreieck	Dreieck	2.7	4.6	7.4	7.7	9.5	13.5	4.1	21.5	16100
	2h300j_dreieck	Dreieck	2.8	4.4	7.3	7.7	9.6	13.4	3.7	21.3	20800
300	4h300j_dreieck	Dreieck	2.8	3.1	5.9	6.2	7.6	10.3	2.6	15.9	18700
	12h300j_block	gleichmässig	2.7	2.3	5.2	5.3	6.2	8.0	1.7	11.5	17000
	24h300j_block	gleichmässig	2.1	1.4	3.7	3.8	4.4	5.4	1.0	7.6	3700
	48h300j_block	gleichmässig	1.4	0.9	2.3	2.4	2.8	3.4	0.6	4.8	600

Anhang 7: c) Beckenberechnungen mit einer variablen Drosselwassermenge, bei vollem Becken 3.0 m³/s.

Anhang 8.1: Die Eigenschaften der im Anhang 8.2b und c dargestellten Bodenprofile im EZG des Dorfbachs von Buttisholz (B1-B21) mit der Einschätzung von Infiltration und Speicherfähigkeit und Angabe des zu erwartenden dominanten Abflussprozesses (Abkürzungen siehe auch Legende 8.2a: U, u = Silt, siltig; L, I = Lehm, lehmig; S, s = Sand, sandig; T, t: Ton, tonig; A = Oberboden, B = Unterboden, C = Ausgangsmaterial, H, h = organisches Material, m = Festgestein, Sw, Sd Bodenhorizonte von Pseudogleyböden. Prozesse: SSF (Subsurface Flow = Abfluss im Boden), SOF (Saturated Overland Flow = gesättigter Oberflächenabfluss), DP (Deep Percolation = Tiefensickerung), SOF1: rasch, SOF2: leicht verzögert, SOF3 stark bis sehr stark verzögert abfliessend). USM (Untere Süsswasser-Molasse), OMM (Obere Meeres-Molasse).


	USM (Untere Süsswasser-Molasse),	OMM					
	Profilbeschreibung		Profilbeschreibung				
B1	Buttisholz, Wiesenau	B2	Buttisholz, Under Gattwil				
	Mähwiese		Mähwiese				
	ehem. Moor		Würmmoräne				
	Braunerde-Gley		Braunerde (BE) leicht pseudovergleyt				
	(Pürckh.)		(Pürckhauer)				
	Ah/Bw brauner Us bis Lu		Ah/Bw: brauner Us				
	Br: grauer Lu		Bg: brauner Us				
] 3				
	Infiltrationsvermögen (Inf.): normal						
	Speichervermögen (Spv.): mässig						
- DO	Prozesse (Proz.): SOF2	5.4	Proz.: SOF3				
B3	Buttisholz, Luternau	B4	Buttisholz, Fürti				
	Weide		Mähwiese				
	Würmmoräne		Moräne				
	BE-Gley		BE leicht pseudovergleyt				
	(Pürckh.)		(Pürckh.)				
	Ah: dunkelbrauner Us		Ah: dunkelbrauner U				
	Bwg: brauner Us		Bw: brauner Us				
	Bgg: braun-beiger Us		Bg: brauner Us-Ls				
	Inf.: normal		Inf.: normal				
	Spv.: mässig		Spv.: gross				
	Proz.: SOF2		Proz.: SOF3				
B5	Buttisholz, Horütiwald	B6	Buttisholz, Horütiwald				
50	Fichtenmischwald		Mischwald				
	Moräne		Morane				
	Buntgley		BE-Gley				
	(Pürckh.)		(Pürckh.)				
	Ah: brauner Us		Ah: dunkelbrauner Us				
	Bwg: brauner Lu		Bw: brauner Us				
	Bgg: brauner Lu bis beigegrauer Lu		Bggr:: beige-grauer Us				
	Inf.: leicht gehemmt bis normal		Inf.: normal				
	Spv.: mässig-gering		Spv.: mässig				
	Proz.: SSF1 - SOF2		Proz.: SSF2				
B7	Buttisholz, Wase	B8	Buttisholz, Meieberg				
	Mähwiese		Mähwiese				
	Moräne?		Moräne				
	Gley		BE, pseudovergleyt				
	(Pürckh.)		(Pürckh.)				
	Ah/Bw: dunkelbrauner Us		Ah: dunkelbrauner Us				
	Bggr: grauer Su		Bw: brauner Us				
	Inf.: gehemmt		Bg: braun-beiger Us				
	Spv.: gering		Inf.: normal				
	Proz.: SOF1-2		Spv.: mässig-gross				
	1102 33112		Proz.: SOF3				
B9	Buttisholz, Hängst	B10	Buttisholz, Gattwil				
53	Mähwiese	الانا	Mähwiese				
	Obere Süsswassermolasse (Sandstein)		Moräne, ehem. Moor				
	BE						
			Anmoor-Gley				
	(Pürckh.)		(Pürckh.)				
	Ah: dunkelbrauner Us		Ao: dunkel- bis schwarzbrauner Humus				
	Bw: beiger Us		Br: grauer Ls				
	Inf.: normal		Inf.: gehemmt				
	Spv.: gross		Spv.: gering				
	Proz.: SOF3		Proz.: SOF2				


	Profilbeschreibung		Profilbeschreibung
B11	Nottwil, Mittelarig	B12	Nottwil, Oberarig
	Mähwiese	1012	Kunstwiese
	Moräne		Moräne
	BE-Pseudogley		BE-Gley
	(Pürckh.)		(Pürckh.)
	Ah: dunkelbrauner Us		Ah/Bw: brauner Lu
	Bw: brauner Us		Br/C?: grauer S(u)
	Bg(g): beige-brauner Us		Inf.: gehemmt
	Inf.: normal		
	Spv.: mässig		Spv.: mässig Proz.: SOF1-2
	Proz.: SOF2-3		
B13	Nottwil, Figlisberg	B14	Buttisholz, Sandblatte
	Mähwiese		Mähwiese
	Moräne		Obere Süsswassermolasse
	BE-Gley		BE-Pseudogley
	(Pürckh.)		(Pürckh.)
	Ah: dunkelbrauner Us		Ah: dunkelbrauner Us
	Bw: brauner Us		Bwg: rötlich- bis beigebrauner Us
	Bgg: beigebrauner bis grauer Ls4		Bg: rötlich-beigebrauner Ls
	Inf.: leicht gehemmt		Inf.: normal
	Spv.: mässig		Spv.: mässig
	Proz.: SOF2		Proz.: SOF2-3
B15	Buttisholz, Lisibach	B16	Buttisholz, Gustibergwald
	Mähwiese		Fichtenwald
	Obere Süsswassermolasse		Moräne
	BE (sehr flachgründig)		BE
	(Pürckh.)		(Pürckh.)
	Ah: dunkelbrauner Us		Ah: brauner Us
	Bw: brauner Us		Bw: beiger Us mit sehr viel Skelett
	Cz: grauer Sandstein		Inf.: normal
	Inf.: normal		Spv.: gross
	Spv.: mässig Proz.: SSF2		Proz.: SSF3
B17	Buttisholz, Stöckli	B18	Buttisholz, Rothus
517	Mähwiese	5.0	Mähwiese
	Moräne?, Obere Süsswassermolasse?		Morane?
	BE		BE
	(Pürckh.)		(Pürckh.)
	Ah/Bw: dunkelbrauner Us		Ah: dunkelbrauner Us
	Cz: grauer, verwitterter Sandstein		Bw1: brauner Us
	Inf.: normal		Bw2g: brauner Us, dicht gelagert
	Spv.: mässig		Inf.: normal
	Proz.: SOF2-3		Spv.: gross
			Proz.: ŠOF3
B19	Buttisholz, Under Allmend	B20	Buttisholz, Tannebach
	Mähwiese		Mähwiese
	Rückzugsschotter		Rückzugsschotter
	BE-Gley		Buntgley
	(Pürckh.)		(Pürckh.)
	Ah/Bw: brauner Us		Ah: brauner Us
	Br: grauer Us		Bgg: brauner Us
	Inf.: leicht gehemmt		Br: grauer Us
	Spv.: mässig bis gering		Inf.: gehemmt
	Proz.: SOF1-2		Spv.: mässig
			Proz.: SOF2
B21	Buttisholz, Altimoos		
	Mähwiese		
	Moräne		
	BE, pseudovergleyt		
	(Pürckh.)		
	Ah: brauner Us		
	Bw: beigebrauner Us		
	Bg(g): beiger, teilweise grauer Us		
	Inf.: normal		
	Spv.: mässig bis gross		
	Proz.: SOF3		
	•	_	

Boden	itypen	Haupthorizonte						
O F R K B T Y I V	Regosol Fluvisol Rendzina Ranker Kalkbraunerde Braunerde Parabraunerde Braunerde-Pseudogley Pseudogley Braunerde-Gley	O T A E I B C R	org. Auflagehorizont Torf/hydromorpher org. Horizont organo-mineralischer Oberboden- horizont Eluvialhorizont Illuvialhorizont Mittelbodenhorizont Untergrund (Ausgangsmaterial) Felsunterlage					
W G A	Buntgley Fahlgley Aueboden	Unter	teilung Haupthorizonte					
N M	Halbmoor Moor	Zusta I f h	nd org. Substanz Streuezone Fermentationszone Humusstoffzone					
Körnu	ng	а	Anmoor					
•••	Sand (S), sandig (s)	org	organisches Material im Unterboden					
	Silt (U), siltig (u)	Verwit ch w z	tterungszustand chem. vollständig verwittert Verwitterungshorizont Zersatz Muttergestein					
= =	Ton (T), tonig (t)	Merkr	nale des Sauerstoffmangels					
=_·	Lehm (L), lehmig (I)	m cn (g)	Marmorierungen punktförmige, schwarze Knöllchen schwache Rostfleckung					
:·	Ls	g gg	mässige Rostfleckung Horizont mit starker Rostfleckung infolge periodischer Vernässung					
=.·	stark sandiger L (Ls4)	r	dauernd, vernässter, stark reduzierter Horizont					
<u></u>	Wasserspiegel							

Anhang 8.2b: Die im Gebiet des Dorfbachs von Buttisholz untersuchten Bodenprofile (B1-B10) mit der Angabe des Standorts, der Landnutzung, der Geologie, des Bodentyps und der Sondiermethode. Eine Beschreibung der Profile befindet sich im Anhang 8.1.

Anhang 8.2c. Die im Gebiet des Dorfbachs von Buttisholz untersuchten Bodenprofile (B11-B20) mit der Angabe des Standorts, der Landnutzung, der Geologie, des Bodentyps und der Sondiermethode. Eine Beschreibung der Profile befindet sich im Anhang 8.1.

B21
Ort. Buttisholz, Altimoos
Landnutzung (LN): Mähwiese
Geologie (Geol.): Moräne
Bodentyp: BE, pseudovergleyt
Sondierung: Pürckhauer (Pürckh.)

Anhang 8.2d: Die im Gebiet des Dorfbachs von Buttisholz untersuchten Bodenprofile (B11-B20) mit der Angabe des Standorts, der Landnutzung, der Geologie, des Bodentyps und der Sondiermethode. Eine Beschreibung der Profile befindet sich im Anhang 8.1.