

Hydrologische Grundlagen für den Huebbach in Langnau bei Reiden

Das Hochwasser vom 4.7.2009 in Langnau bei Reiden. (Foto: E. Stöckli)

Auftraggeber:
Abteilung Naturgefahren
Verkehr und Infrastruktur
Kanton Luzern

Bericht: 18/243 Reinach, Dezember 2018

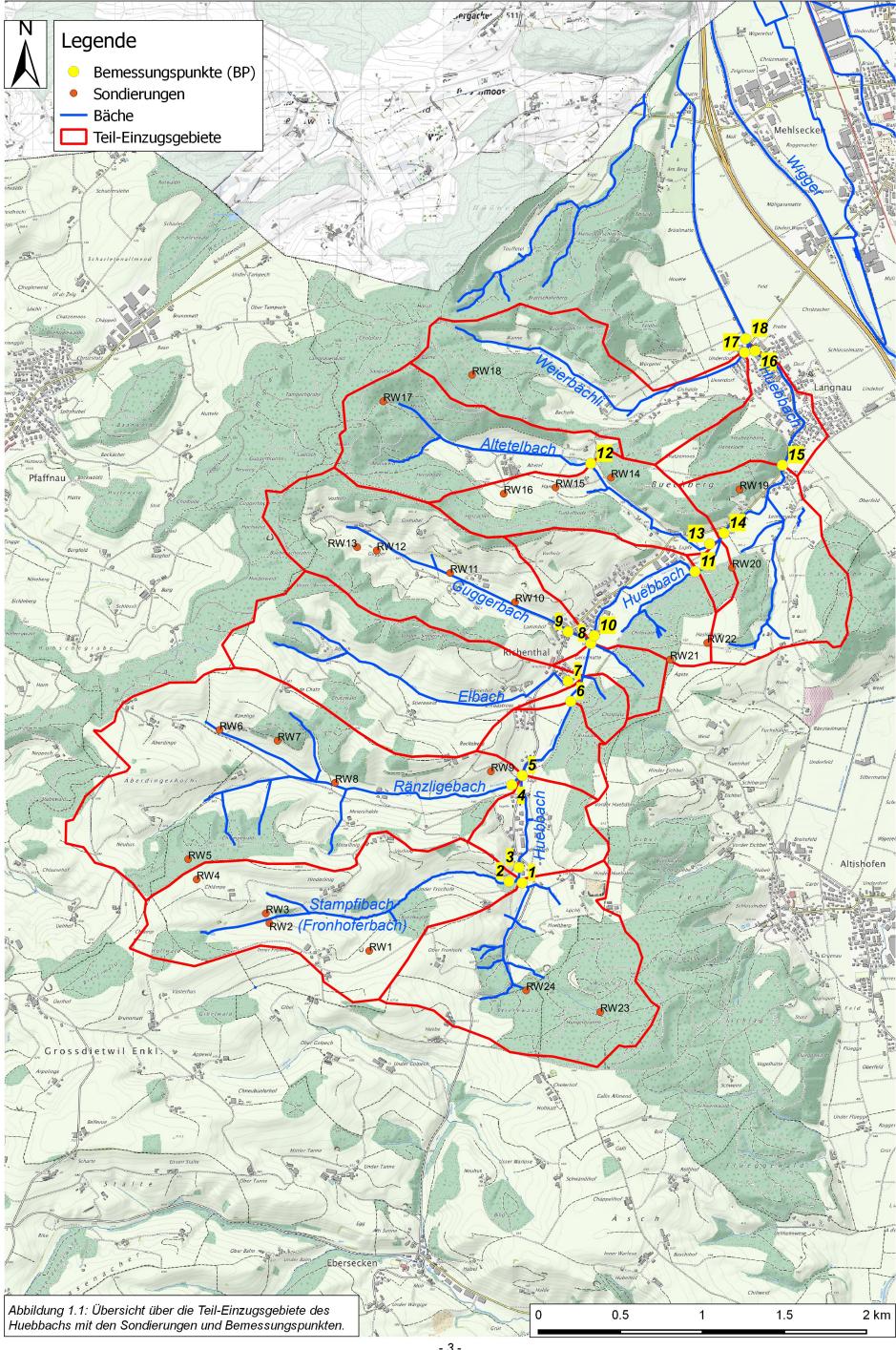
Inhaltsverzeichnis

1	Einleitung	3
	1.1 Problemstellung	3
	1.2 Vorgehen	
	1.3 Gebietskennwerte	5
2	Verwendete Daten und Unterlagen	6
3	Historische Hochwasser	<i>7</i>
	3.1 Einleitung	7
	3.2 Die historischen Hochwasser am Huebbach	7
	3.3 Schlussfolgerungen	10
4	Beurteilung der Abflussreaktion des Gebiets	11
	4.1 Einleitung	11
	4.2 Geologie und Hydrogeologie	11
	4.3 Böden	11
	4.4 Massgebende Abflussprozesse und Abflusstypen	12
	4.5 Abflussreaktion der Siedlungsgebiete	16
	4.6 Abflussreaktionskurven	16
5	Abflussberechnungen	18
	5.1 Einleitung	
	5.2 Grundlagen und Aufbau des Modells Qarea	18
	5.3 Modellverifikation	20
	5.4 Niederschlags-Szenarien	20
	5.5 Abflussberechnungen	22
6	Hochwasserabflüsse definierter Jährlichkeit	24
	Hochwasserrückhaltebecken	
	Anhana	31

1 Einleitung

1.1 Problemstellung

Der Huebbach in Langnau bei Reiden entwässert ein langgezogenes Tal mit einem Einzugsgebiet (EZG) von 12.4 km². Verschiedene Seitenbäche fliessen vom Burgwald (ca. 700 m ü. M.) ins ländliche Tal des Huebbachs, das etwa in Nord – Südrichtung mit ca. 2% Gefälle verläuft. Oberhalb Langnau bei Reiden (465 m ü. M.) tritt der Huebbach ins Wiggertal, wo er in einem engen Kanal mit knapper Abflusskapazität läuft. Die Gefahrenkarte des Kantons Luzern zeigt im Bereich des Dorfes Langnau grössere Flächen mit mittlerer Gefährdung (blau).


Es besteht die Absicht, ein Teil des bei Hochwasser anfallenden Abflusses unmittelbar oberhalb des Dorfes auszuleiten und direkt zur Wigger zu führen. Eine andere Möglichkeit wäre, die Abflussspitzen entlang des Huebbachs mit Hochwasserrückhaltebecken (HRB) zu dämpfen. Ideale Beckenstandorte mit grossen Volumen sind aufgrund des herrschenden Gefälles allerdings rar und es müssten mehrere, hintereinander liegende HRB in Betracht gezogen werden.

In einem ersten Schritt werden im Folgenden die Hochwasserabflüsse unterschiedlicher Jährlichkeit (HQ_x) entlang des Huebbachs und seiner wichtigsten Seitenbäche ermittelt und die anfallenden Abflussvolumen an verschiedenen potentiellen Beckenstandorten dargestellt. In einem zweiten Schritt könnte die Wirkung von hintereinander liegenden HRB auf die Abflüsse unterhalb untersucht werden und Vorschläge zur Optimierung aufgezeigt werden.

1.2 Vorgehen

Der vorliegende Bericht stellt die Resultate der durchgeführten Untersuchungen dar. Im Kapitel 2 sind die verwendeten Daten und Unterlagen zusammengestellt. Kapitel 3 zeigt die aus den Erkundungen der historischen Hochwasser gewonnenen Erkenntnisse. In Kapitel 4 wird das EZG nach seiner Abflussbereitschaft beurteilt. Darauf aufbauend erfolgen die Berechnungen mit einem Niederschlag-Abfluss-Modell (Kap. 5). Im Kapitel 6 werden die Hochwasserabflüsse bestimmter Jährlichkeit (HQ_x) für den Huebbach oberhalb Langnau hergeleitet, indem sämtliche Resultate in einem Frequenzdiagramm zusammengefügt werden. Darauf aufbauend werden die Hochwasserabflüsse unterschiedlicher Jährlichkeit (HQ_x) entlang des Huebbachs und seiner wichtigsten Seitenbäche sowie die anfallenden Abflussvolumen an verschiedenen potentiellen Beckenstandorten dargestellt.

1.3 Gebietskennwerte

Diese Kennwerte beziehen sich auf die in Abbildung 1.1 aufgeführten Teil-EZG.

Tab. 1.1: Gebietskennwerte Huebbach in Langnau bei Reiden

Höchster Punkt im Einzugsgebiet (Breitiwald oberhalb Västerhus)	725 m ü. M.
Tiefster Punkt im Einzugsgebiet (BP18 unterhalb Langnau)	462 m ü. M.
EZG oberhalb BP 1: Huebbach oberhalb Hueb	1.3 km ²
EZG oberhalb BP 2: Stampfibach (Fronhoferbach) oberhalb Hueb	1.3 km ²
EZG oberhalb BP 4: Ränzligebach oberhalb Sagi	2.2 km ²
EZG oberhalb BP 5: Huebbach oberhalb Sagi nach Zusammenfluss mit Ränzligebach	5.1 km ²
EZG oberhalb BP 7: Elbach oberhalb BP7	1.2 km ²
EZG oberhalb BP 9: Guggerbach oberhalb Richenthal	1.2 km ²
EZG oberhalb BP 10: Huebbach oberhalb Richenthal nach Zusammenfluss Guggerbach	8.1 km²
EZG oberhalb BP 11: Huebbach unterhalb Richenthal, Lischmatte	8.7 km²
EZG oberhalb BP 12: Altetelbach, Oberlauf	0.8 km²
EZG oberhalb BP 13: Altetelbach, Mündung in Huebbach	1.4 km²
EZG oberhalb BP 14: Huebbach nach Zusammenfluss mit Altetelbach	10.2 km²
EZG oberhalb BP 15: Huebbach oberhalb Langnau	11.0 km²
EZG oberhalb BP 17: Weierbächli	1.0 km²
EZG oberhalb BP 18: Huebbach unterhalb Langnau nach Zusammenfluss mit Weierbächli	12.4 km²

2 Verwendete Daten und Unterlagen

- Andres N., Badoux A., Hegg Ch. (2016): Unwetterschäden in der Schweiz im Jahre 2015. Wasser, Energie, Luft. 2016, Heft 1.
- Bundesamt für Landestopographie (2018): Geocover-Daten https://map.geo.admin.ch/
- Colenco (1999): Bauprojekt Huebbachausbau Langnau
- Ereigniskataster GEKA Luthern-Wiggertal, StorMe-Formulare
- Feuerwehr Wiggertal (2018): www.fw-wiggertal.ch
- Fotodokumentation Gewitter vom 04.07.2009 in der Gemeinde Reiden
- Fotodokumentation Gewitter vom 08.08.2009 in der Gemeinde Reiden
- Gerber M. E. (1994): Geologischer Atlas der Schweiz, 1129 Sursee, Erläuterungen.
- Huber, Max (1996): Langnau im Wiggertal: Eine Ortsgeschichte.
- Hilker N., Badoux A., Hegg Ch. (2011): Unwetterschäden in der Schweiz im Jahre 2010. Wasser, Energie, Luft. 2011, Heft 1.
- Jäckli H., Kempf Th. (1972): Hydrogeologische Karte der Schweiz, 1: 100'000, Blatt Bözberg-Beromünster, Erläuterungen, Herausgegeben von der Schweizerischen Geotechnischen Kommission.
- Kantonales Tiefbauamt Luzern (1987): Sanierung des Huebbaches und Zuflüsse: Behebung der Hochwasserschäden vom 16./17. und 20.Juni 1986
- Kanton LU (2018): geoportal Kt. LU.
- Kt. Luzern (1932): Teilkorrektion am Richenthalerbach beim Kurhaus Gemeinde Richenthal. Technischer Bericht. Kantonsingenieur. Luzern, den 26. Aug. 1932.
- Kienzler P., Naef F. (2008): Subsurface storm flow formation at different hillslopes and implications for the 'old water paradox'. Hydrological Processes, 22, 104–116.
- Kost & Partner (2000): Ausführungsprojekt: Ausbau des Huebbachs, Oberdorf Langnau
- Lanz-Stauffer, H. und C. Rommel (1936): Elementarschäden und Versicherung. Studie des Rückversicherungsverbandes kantonal-schweizerischer Feuerversicherungsanstalten zur Förderung der Elementarschadenversicherung, Band 2. Selbstverlag des Rückversicherungsverbandes. Bern.
- MeteoSchweiz: Niederschlagsdaten. Witterungsberichte und Annalen, diverse Jahre.
- Müller W. H., Huber M., Isler A., Kleboth P. (1984): Geologische Karte der zentralen Nordschweiz, 1·100`000
- Naef F., Scherrer S., Frauchiger R. (2004): Wie beeinflusst die Siedlungsentwicklung von Zürich-Nord die Hochwasser der Glatt? Wasser Energie Luft, 96, 11/12, 331-338.
- Naef F., Scherrer S., Zurbrügg C. (1999): Grosse Hochwasser unterschiedliche Reaktion von Einzugsgebieten auf Starkregen. Hydrologischer Atlas der Schweiz, Blatt 5.7.
- Niederer & Pozzi (undatiert): Rekonstruktion Abflüsse HW 1986. Präsentation.
- Röthlisberger G. (1991): Chronik der Unwetterschäden in der Schweiz. Berichte der WSL Nr. 330.
- RR Kt. Luzern (1987): Regierungsrat des Kantons Luzern, Sitzung vom 17. Februar 1987, Protokoll Nr. 420.
- Scherrer AG (2004): Bestimmungsschlüssel zur Identifikation von hochwasserrelevanten Flächen. Im Auftrag des Landesamtes für Wasserwirtschaft Rheinland-Pfalz.
- Scherrer S. (1997): Abflussbildung bei Starkniederschlägen Identifikation von Abflussprozessen mittels künstlicher Niederschläge. In: Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Nr. 147.
- Scherrer S., Naef F. (2003): A decision scheme to indicate dominant flow processes on temperate grassland. In: Hydrological Processes, 17, 391-401.
- Stalder, Peter (1992): Huebbachdurchlass Langnau Oberdorf Variantenstudie
- WSL, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft (2016): Schadendatenbank der Gemeinden Reiden, Langnau und Richenthal (1972–2017).
- www.reiden.hermannkeist.ch/reiden-anno-dazumal/unterwasser (abgerufen am 11.9.2018)
- Zeller J., Röthlisberger G. (1987): Unwetterschäden in der Schweiz im Jahre 1986. Wasser, Energie, Luft. 1987, Heft 10.

3 Historische Hochwasser

3.1 Einleitung

Abflussmessungen liegen am Huebbach in Langnau leider keine vor. Durch die Untersuchung historischer Hochwasser lassen sich aber dennoch Hinweise über Häufigkeit, Grösse und Verlauf von Hochwasserereignissen zusammentragen. Durch das Zusammentragen von Informationen aus Zeitungen, Archiven und verbürgten Angaben von Anwohnern und Verantwortlichen konnte ein Beobachtungszeitraum von ca. 100 – 150 Jahren erschlossen werden.

3.2 Die historischen Hochwasser am Huebbach

Die Auswertungen der Unterlagen und Befragungen ergaben viele, teilweise sehr detaillierte Informationen über die Hochwassergeschichte des Huebbachs, so dass die Grösse der einzelnen Hochwasser abgeschätzt und eingeordnet werden konnte. Dabei waren insbesondere Ereignisdokumentationen der jüngeren Ereignisse (2000er Jahre) und Foto- und Filmaufnahmen der älteren Ereignisse (1980er Jahre) sehr hilfreich. In Kapitel 2 sind die befragten Gewährspersonen und die untersuchten Quellen aufgeführt. Alle wesentlichen Angaben sind im Anhang 1 detailliert aufgelistet. Im Folgenden werden die wichtigsten Informationen zu den Hochwasserereignissen zusammengefasst.

Die Gemeinden Richenthal und Langnau bestehen schon längere Zeit mit nahezu konstanter Einwohnerzahl. Es gab keine grundlegenden baulichen Veränderungen am Huebbach seit dem Ausbau des "Dorfbachs" in Langnau in den 1920er Jahren. Lediglich der Bachabschnitt im Langnauer Oberdorf wurde Anfang der 2000er Jahre ausgebaut und vergrössert.

Eine erste Erwähnung des Huebbachs im Zusammenhang mit Hochwasser findet sich aus dem Jahre 1910. Die Wigger verursachte damals grossflächige Überschwemmungen und am 20.1.1910 "trat der Dorfbach in Langnau über die Ufer und setzte mehrere Häuser unter Wasser."

Das grösste bekannte Hochwasser am Huebbach trat am 24. Juni 1931 auf. Infolge eines "schweren Gewitters besonders über den Gemeinden Reiden und Langnau trat der Dorfbach in Langnau über die Ufer, überschwemmte die Strasse und verschiedene Keller und Wohnungen." Beträchtliche Schäden wurden in Langnau registriert, aber auch im Oberlauf des Huebbachs beim Kurhaus und der Sägerei in Richenthal und vor allem beim (heute nicht mehr existierenden) Gasthaus Kreuz. Aufgrund der Angaben wurde der Abfluss in Langnau auf 15 – 20 m³/s geschätzt.

Im selben Jahr, am 23.8.1931 trat ein weiteres Hochwasser des Huebbachs nach einem Gewitter auf, bei dem wieder die Strasse in Langnau überschwemmt wurde, aber offenbar nur kleinere Schäden verursacht wurden. Nur ein Jahr später, am 20. Juli 1932 wurde wieder ein ähnliches Hochwasser in Richenthal und in Langnau verzeichnet, ebenso von einem weiteren Gewitterhochwasser am 25. Juni 1936, von dem allerdings nur wenig bekannt ist.

Am 22.11.1972 verursachte die Wigger grossflächige Überschwemmungen und "verheerende Schäden" nach ergiebigem Dauerregen, vom Huebbach sind keine Ausuferungen dokumentiert. Hingegen gab es im Unterlauf des Huebbachs bei Mehlsecken Überschwemmungen infolge von Landregenereignissen am 7.11.1979 sowie am 3.2.1980 und am 16.12.1981.

Im Juni 1986 traten infolge von Gewittern gleich zwei grosse Hochwasser innerhalb von wenigen Tagen auf. Am 16.6.1986 und am 20.6.1986 traten der Huebbach und auch mehrere Seitenbäche über die Ufer und verursachten Überschwemmungen und grössere Schäden. Anhand von

Tah 31.

Fotografien und filmischen Aufnahmen konnte der Abfluss in Langnau abgeschätzt werden. Bei beiden Ereignissen betrug der Spitzenabfluss in Langnau jeweils ca. 12 – 15 m³/s.

Kleinere Ereignisse mit geringeren Schäden traten infolge von Gewittern am 25.6.1994, am 6.8.1994 und am 13.7.1999 auf, sowie nach Dauerregen am 25.12.1995 und am 19.2.1999, wobei v.a. der Oberlauf des Huebbachs im Gebiet Hueb betroffen war.

Beim Hochwasserereignis vom 21.6.2007 trat der Huebbach infolge eines Gewittters gleich an mehreren Stellen über die Ufer, im Oberlauf an der Säge, im Gebiet Lupfen, sowie in und unterhalb Langnau. Aufgrund der Angaben betrug der Abfluss in Langnau ca. 6 – 8 m³/s. Das überregionale Landregenereignis vom 8.-9. August 2007 verursachte Überschwemmungen im geringeren Ausmass im Unterlauf des Huebbachs zwischen Langnau und Mehlsecken, sowie in Richenthal an einem verstopften Durchlass.

Weitere Überschwemmungen ereigneten sich im Jahr 2009, als am 4.7.2009 und am 10.8.2009 infolge von Gewittern der Huebbach an mehreren Stellen über die Ufer trat. Dabei traten beim Ereignis vom 4.7.2009 die Überschwemmungen vor allem durch Oberflächenabfluss und durch verstopfte Durchlässe auf. Das Ereignis vom 10.8.2009 war deutlich grösser, vergleichbar mit dem Ereignis vom 21.6.2007. Der Schwerpunkt des Ereignisses lag im Huebbach-Oberlauf und Überschwemmungen traten im Gebiet Hueb, an der Säge und im Gebiet Lupfen auf. Bei beiden Ereignissen trat der Ränzligenbach über die Ufer und verursachte Schäden am Meiershaldenhof.

Weitere Überschwemmungen im Oberlauf des Huebbachs traten während eines Gewitters am 29.7.2010 auf. Ein Landregenereignis am 1.-3.5.2015 verursachte erhöhte Abflüsse und es wurden vorsorglich Sandsäcke gestapelt. Überschwemmungen konnten so vermieden werden. Erhöhte Abflüsse traten wiederum nach einem Gewitter am 12.7.2016 auf, bei dem im Gebiet Lupfen die Böschung stabilisiert werden musste.

In Abbildung 3.1 wurden die Hochwasser nach ihrer Grösse eingeordnet und auf einer Zeitleiste dargestellt. In Tabelle 3.1 wird die Einordnung der Hochwasser erläutert.

Finordnungskriterien zur Wertung historischer Hochwasser am Huehhach in Langnau

140. 0.1.	Linoran	rangemienen zar wert	ang motoriconer riconwasser am riaessaon in Eanghau.
		Huebbach beim	Beschreibung
		BP 15 in Langnau	
		(44 1 2)	

	Huebbach beim BP 15 in Langnau (11 km²)	Beschreibung
klein	< 5 m ³ /s	Hochwasser erwähnt, Feuerwehreinsatz, lokal Überschwemmungen oder Schäden.
mittel	6 – 9 m³/s	Überschwemmungen und Sachschäden, Wasser auf der Strasse, Keller unter Wasser.
gross	10 – 15 m³/s	sehr grosse Überschwemmungen und Sachschäden, Wasser auf der Strasse, Keller und Erdgeschosse unter Wasser.
sehr gross	15 – 20 m³/s	sehr grosse Überschwemmungen und Sachschäden, Wasser auf der Strasse, Keller und Erdgeschosse unter Wasser, Brücken beschädigt oder weggerissen

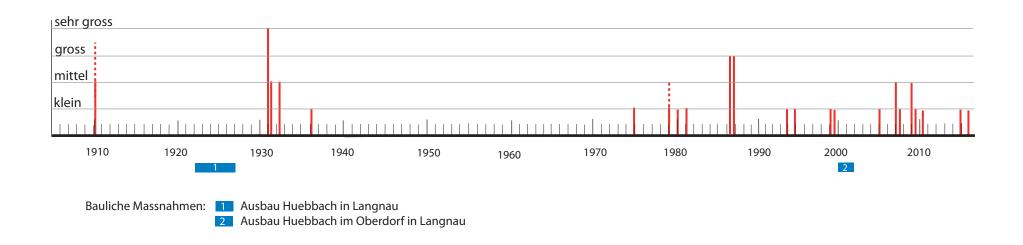


Abb. 3.1: Historische Hochwasser am Huebbach in Langnau seit 1900 und Charakterisierung der Grösse der einzelnen Hochwasser anhand der untersuchten Quellen.

3.3 Schlussfolgerungen

Aus den Erkundungen historischer Hochwasser lassen sich folgende Schlüsse ziehen:

- Durch die Recherchen über historische Hochwasser eröffnet sich ein Beobachtungszeitraum von ca. 100 bis 130 Jahren. Durch den Bachausbau in den 1920er Jahren ist es schwer, die älteren Ereignisse einzuordnen.
- Das grösste Hochwasser der letzten 100 130 Jahre ereignete sich am 24. Juni 1931. Die Abflussspitze am Huebbach in Langnau (BP 15) wurde auf 15 20 m³/s geschätzt.
- Zwei grosse Hochwasser ereigneten sich innerhalb weniger Tage am 16. und am 20. Juni 1986, bei denen am Huebbach in Langnau (BP 15) jeweils Abflussspitzen von ca. 12 15 m³/s auftraten.
- Aus den letzten 100 Jahren sind weitere vier mittlere Hochwasser des Huebbachs bekannt, die lokale Überschwemmungen und Hochwasserschäden verursachten. Am Huebbach in Langnau (BP 15) traten dabei Abflussspitzen von ca. 6 9 m³/s auf.
- Die grösseren Hochwasser am Huebbach wurden vor allem durch Gewitter ausgelöst. Durch langandauernde Landregen gab es nur kleine bis mittlere Hochwasser.

4 Beurteilung der Abflussreaktion des Gebiets

4.1 Einleitung

Bei einem Starkregen fliesst ein Teil des Niederschlags schnell ab. Das übrige Wasser infiltriert in den Boden, wo verschiedene Fliesswege vorhanden sind, die mit unterschiedlichen Fliessgeschwindigkeiten durchflossen werden. Die Abflussreaktion eines Baches auf Starkregen kann rasch bis verzögert verlaufen, je nachdem, wie viel Wasser sofort abfliesst und welche Fliesswege der infiltrierte Niederschlag im Boden nimmt.

Um zu beurteilen, wie sich EZG bei extremem Starkregen verhalten, sind Kenntnisse über die Abflussreaktion notwendig. Die Abflussreaktion eines EZG hängt neben dem Niederschlag vor allem davon ab, wie viel Wasser bei Starkregen in den Boden eindringt und vorübergehend zurückgehalten wird und wie viel Wasser sofort abfliesst (Abflussprozesse). Dies ist von der Gebietsausstattung abhängig (Geologie, Böden, Geomorphologie, Vegetation, Landnutzung u. a.). Welche Abflussprozesse bei Starkregen an natürlichen Hängen ablaufen, wurde detailliert mittels Beregnungsversuchen untersucht (Scherrer, 1997; Naef et al., 1999, Scherrer & Naef, 2003, Kienzler & Naef, 2008). Kienzler führte südlich von Reiden im Sertel und Lutertal zwei Beregnungsversuche, die sich durch die stark verzögerte Abflussreaktion auszeichneten. Darauf aufbauend wurde ein Bestimmungsschlüssel entwickelt, der die Identifikation hochwasserrelevanter Flächen erlaubt (Scherrer AG, 2004). Die Beurteilung der Abflussreaktion des Untersuchungsgebiets lehnt sich eng an diesen Bestimmungsschlüssel an.

4.2 Geologie und Hydrogeologie

Für den geologischen Aufbau des EZG des Huebbachs resp. für die hydrogeologische Einschätzung wurden folgende Quellen gesichtet: Gerber (1994), Bundesamt für Landestopographie (2018), Jäckli und Kempf (1972), Müller et al. (1984), geoportal Kt. LU (2018).

Geologie: Die Obere Meeresmolasse (OMM) bildet zum überwiegenden Teil den geologischen Untergrund des Huebbach-EZG. Die OMM unterteilt sich in die Luzernerschichten, aus der der untere Teil der Hänge aufgebaut ist und in die St.Gallerschichten, welche den oberen Teil der Hänge und Kuppenlagen bilden. Luzerner- und St.Gallerschichten bestehen aus durchlässigen Sandsteinen, wobei letztere stärker verwittert und noch durchlässiger sind. Beide Formationen sind meist von geringmächtiger, ebenfalls durchlässiger Moräne überdeckt.

Hydrogeologie: Die Talfüllungen bestehen aus Schottern und Sanden der Bäche. Darin zirkuliert Hueb und Langnau Grundwasser. In Langnau vereint sich dieser mit dem Grundwasserträger der Wigger.

Aufgrund der Durchlässigkeit der Böden und des Sandsteins der Oberen Meeresmolasse verwundert es nicht, dass viele Mulden und kleine Täler nebst den Eindolungen ohne Fliessgewässer sind und ein Grossteil des Niederschlags versickert. Etliche gefasste Quellen liegen an den Hängen im Bereich der Oberen Meeresmolasse.

4.3 Böden

Im EZG existieren kaum bodenkundliche Informationen. Flächendeckend liegt lediglich die Bodeneignungskarte im Massstab 1: 200'000 vor (EJPD, 1980). Diese Grundlage wurde mit 24 Sondierungen von 1 m Tiefe ergänzt, die mit einer Schlagsonde nach Pürckhauer (Kerndurch-

messer 2 cm) abgeteuft wurden. Die Lage der Sondierungen sind in Abbildung 1.1 eingetragen. Im Anhang 4.2 wurden die Bodenprofile abgebildet und beschrieben sowie die Standorte nach Infiltrations- und Wasserspeichervermögen beurteilt. Die Sondierstandorte wurden nach einer EZG-Analyse mit dem Ziel ausgewählt, typische Standorte zu erfassen, welche für die Abflussbildung bedeutend sind. Daher wurden beispielsweise etliche Sondierungen in Steilhängen abgeteuft, um die Mächtigkeit der Böden in solchen Steillagen zu erkunden oder in Muldenlagen, um den Vernässungsgrad der Böden zu untersuchen. Anhand der Bodenprofile wurden das Infiltrations- und Speichervermögen beurteilt und die zu erwartenden Abflussprozesse hergeleitet.

Die Obere Meeresmolasse verwittert stark und es bleibt ein siltig-sandiges Ausgangsmaterial zurück. Darauf entwickeln sich meistens durchlässige, tiefgründige Braunerden (Sondierung RW1, RW3, RW4, RW5, RW7, RW14, RW17, RW18, RW19, RW20, RW21, RW22. In Steilhängen wurden etliche Sondierungen abgeteuft, wobei selten flachgründige Böden angetroffen wurden (RW7, RW20). Böden, die Stauwasser oder Grundwasser beeinflusst sind (Braunerde-Gleye, Gleye oder Pseudogleye), wurden nur wenige angetroffen (RW5,6, RW8, RW11, RW23, RW24). Auch in ausgesprochenen Muldenlagen wurden oft Braunerdeböden nur mit wenig Stauwassereinfluss oder ohne jeglichen Einfluss von Staunässe beobachtet. Diese Tatsache spricht für die gute Durchlässigkeit der Verwitterungsschicht der Oberen Meeresmolasse und der Molasse selber.

4.4 Massgebende Abflussprozesse und Abflusstypen

Abflussprozesse

Tabelle 4.1 zeigt die Kriterien zur Klassifizierung der Abflussbereitschaft. Die Beurteilung und Kartierung der Flächen stützt sich im wesentlichen auf die Bodenkarte, die geologische Karte und Erhebungen im Gelände. Folgende Abflussprozesse wurden unterschieden:

Oberflächenabfluss aufgrund von Infiltrationshemmnissen (Hortonian Overland Flow, HOF) kann im EZG kleinflächig auf Strassen und Felsflächen erwartet werden (HOF1). Verzögerter HOF2 tritt auf wenig geneigten Strassenflächen und auf schwach durchlässigen Böden auf.

Gesättigter Oberflächenabfluss (Saturation Overland Flow, SOF) tritt nach Sättigung des Bodens auf. Man unterscheidet zwischen raschem gesättigtem Oberflächenabfluss (SOF1), verzögertem (SOF2) oder stark verzögertem Oberflächenabfluss (SOF3). Dies gilt analog bei den anderen Abflussprozessen. Auf flachgründigen Böden mit darunterliegender Stauschicht oder feucht-nassen Böden an Hängen mit geringem Speichervermögen erfolgt die Sättigung besonders rasch (SOF1).

Abfluss im Boden (Sub-Surface Flow, SSF) ist zu erwarten, wenn im Boden hoch durchlässige Schichten über einer Stauschicht liegen oder Makroporen dem Wasser ein rasches laterales Fliessen ermöglichen. Günstige Bedingungen für raschen und wenig verzögerten Abfluss im Boden (SSF1, SSF2) sind im EZG v.a. auf steilen Flächen mit flachgründigen, durchlässigen Böden zu erwarten. Stark verzögerter Abfluss im Boden (SSF3) kommt auf steilen, mittelgründigen Böden z.B. über Hangschutt vor. Abfluss im Boden dominiert auf Waldflächen.

Ist sowohl der Boden als auch der geologische Untergrund gut durchlässig, kann auch während Starkregen über die *Tiefensickerung* (Deep Percolation DP) viel Wasser in Boden und Geologie eindringen. Vor allem bei tiefgründigen, durchlässigen Böden über sandiger Moräne oder Schotter versickert ein Grossteil des Niederschlags in den tieferen Untergrund, ohne wesentlich zum Hochwasserabfluss beizutragen.

Abflusstypen

Gemäss den in Tabelle 4.1 aufgeführten Kriterien wurden Abflussprozesse, welche einen ähnlich starken Beitrag zur Entstehung von Hochwasser leisten, kartiert und zu so genannten Abflusstypen zusammengefasst. Diese dienen als Grundlage für die Abflussberechnungen mit dem Niederschlag-Abfluss-Modell Q_{AREA}. Abbildung 4.1 zeigt die Abflussbereitschaft im EZG.

Mit einem Anteil von 96.8% dominieren die natürlichen Flächen im EZG. Flächen des Abflusstyps 1 (sehr rasche Abflussreaktion: gesättigte Flächen wie Ried und Moorflächen in geneigter Lage) kommen im EZG keine vor, während Abflusstyp 4 und 5 (stark bis sehr stark verzögert reagierende Flächen) fast 76% des EZG einnehmen. Die Flächen des Abflusstyps 2 (4.3%) sind bachnahe Flächen mit einem geringen Sättigungsdefizit. Dem Abflusstyp 3 (16.1%) gehören Flächen mit Infiltrationshemmnissen und hydromorphe Böden oder Steilflächen an. Abflusstyp 4 (durchlässige und speicherfähige Böden) machen fast drei Viertel des EZG aus. Den Flächen des Abflusstyps 5 gehören 4% des EZG an.

Im EZG gehören nur 23.6% den rasch bis leicht verzögert reagierenden Abflusstypen 1-3, resp. Siedlungsabflusstypen 1-3 an. Aufgrund dieser Verteilung kann die Abflussbereitschaft des Huebbach-EZG als schwach beurteilt werden.

Tab. 4.1: Dominante Abflussprozesse, Gebietseigenschaften und Abflusstypen der natürlichen Flächen im EZG des Huebachs.

Abfluss- typ	Abfluss- reaktion	Dominante Abflussprozesse	Massgebende Gebietseigenschaften	Flächer am I	ZG	
				(km²)	(%)	
1	Rasch und stark beitra-	sch und Oberflächenabfluss aufgrund von Infiltrationshemmnissen (HOF1) Felsflächen mit Gefälle, steile Gerinneflanken				
	gende Flä- chen	Sofortiger gesättigter Oberflä- chenabfluss (SOF1)	Feucht- und Nassflächen und stark vernässte Böden an Hanglagen			
2	Leicht verzö- gert beitra- gende Flä-	Leicht verzögerter Oberflächen- abfluss aufgrund von Infiltrationshemmnissen (HOF2)	Schwach durchlässige Böden mit geringem Gefälle	0.5	4.3	
	chen	Leicht verzögerter Oberflächen- abfluss aufgrund sich langsam sättigender Flächen (SOF2)	Vernässte Böden im Bereich von Quellmulden, Flachmoore und Galeriewälder an geneigter Lage, Bachflanken und Gerinnesäume			
		Rascher Abfluss im Boden (SSF1)	Flachgründige, gut durchlässige Böden mit lateralen Fliesswegen über schwach durchlässigem Untergrund mit grossem Gefälle, bewaldete Bachflanken			
3 Verzögert beitragende Flächen		Verzögerter Oberflächenabfluss aufgrund sehr langsam sich sättigender Böden (SOF3)	angsam sich lässigkeit		16.1	
		Verzögerter Abfluss im Boden (SSF2)	Mässig tiefgründige, gut durchlässige Böden mit lateralen Fliesswegen über Fels, Hangschutt oder Moräne in Gerinnenähe			
4			Tiefgründige Böden mit guter Durchlässigkeit	9.0	72.4	
		Stark verzögerter Abfluss im Boden (SSF3)	Tiefgründige, gut durchlässige Böden mit lateralen Fliesswegen			
5	Sehr stark verzögert bei-	Tiefensickerung (DP)	Tiefgründige gut durchlässige Böden oder flachgründige, gut durchlässige Böden auf durchlässiger Geologie (Moräne, Hangschutt und Bergsturzmaterial)	0.5	4.0	
tragende Flä- Sehr stark ve		Sehr stark verzögerter Abfluss im Boden (SSF3)	Tiefgründige, gut durchlässige Böden mit lateralen Fliesswegen, gerinnefern			
Total				12.0	96.8	

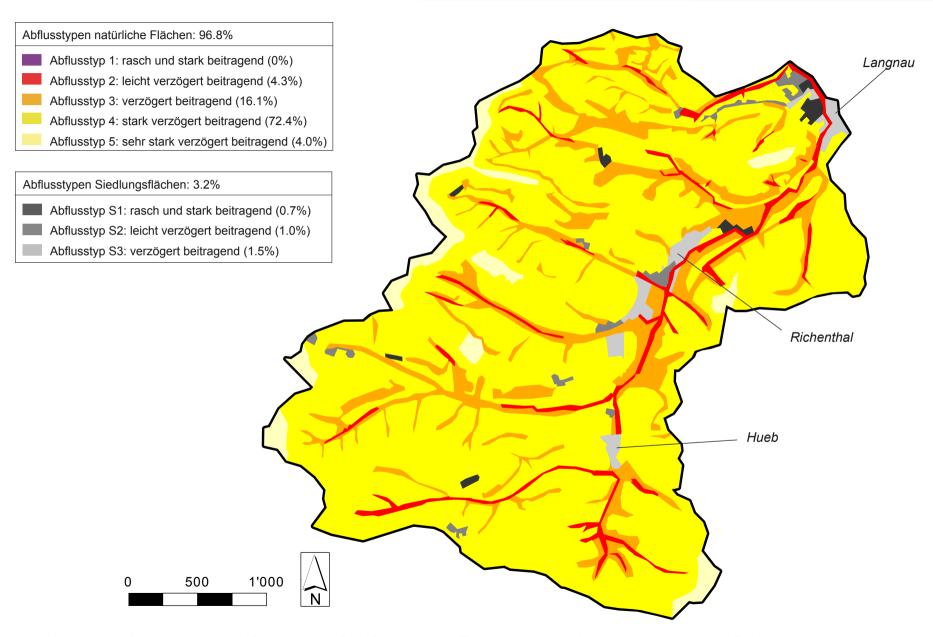
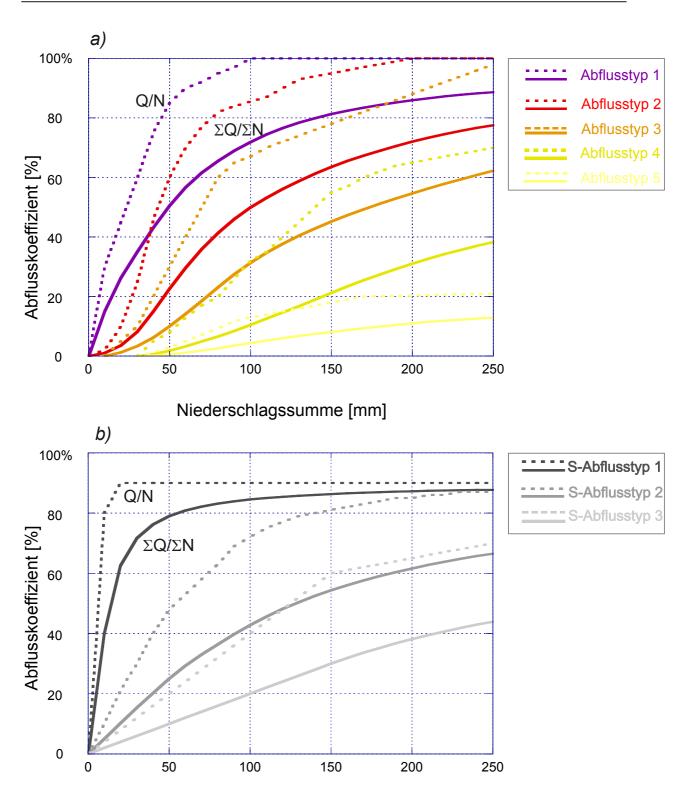


Abb. 4.1: Flächen ähnlicher Abflussbereitschaft (Abflusstypen) im Einzugsgebiet des Huebbachs in Langnau bei Reiden.

4.5 Abflussreaktion der Siedlungsgebiete


Die Siedlungsflächen wurden gesondert kartiert. Die Beurteilung basiert auf den Erfahrungen der Glattstudie (Naef et al., 2004). Wichtige Kriterien waren dabei die Bebauungsdichte und die Geländeneigung. Die Siedlungsgebiete machen nur gerade 3.2% des EZG aus.

Tab. 4.2: Klassierung der Siedlungsflächen nach Abflusstypen.

Abfluss-	Abfluss-	Massgebende Gebietseigenschaften	Flächenantei	I am EZG
typ	reaktion		(km²)	(%)
S1	rasch und stark bei- tragend	sehr dicht bebaute Flächen leicht geneigte, dicht bebaute Flächen stark geneigte, mässig dicht bebaute Flä- chen	0.08	0.7
S2	leicht ver- zögert bei- tragend	ebene, dicht bebaute Flächen leicht geneigte, mässig dicht bebaute Flä- chen geneigte, locker bebaute Flächen	0.12	1.0
S3	verzögert beitragend	geneigte, locker bebaute Flächen leicht geneigte, mässig dicht bebaute Flä- chen	0.20	1.5
Total			0.4	3.2

4.6 Abflussreaktionskurven

Abbildungen 4.2 und 4.3 zeigen die Abflussreaktionskurven für natürliche Flächen und Siedlungsgebiete. Auf der Grundlage von Beregnungsversuchen (Scherrer, 1997) wurden den fünf Abflusstypen der natürlichen Flächen je eine Abflussreaktionskurve zugeordnet. Die Kurven beschreiben den Anteil des abfliessenden Niederschlags in Abhängigkeit der Niederschlagsmenge. Eingetragen sind die Spitzen- und die Volumenabflusskoeffizienten. Bei den flächenmässig dominierenden Flächen des Abflusstyps 4 (ca. 72.4% des EZG) fliessen bei 100 mm Niederschlag nur ca. 10% ab. Bei den ebenfalls stark vertretenen Abflusstypen 3 (ca. 16% des EZG) fliessen bei einem Niederschlag von 100 mm rund 35% ab.

Niederschlagssumme [mm]

Abb. 4.2: Die Abflussreaktionskurven für natürliche Flächen (Abb. 4.2a) und für Siedlungsflächen (Abb. 4.2b). Sie definieren den Anteil des abfliessenden Niederschlags in Abhängigkeit der Niederschlagssumme. Eingetragen ist der Spitzenabflusskoeffizient (Q/N, strichliert) und der Volumenabflusskoeffizient (Σ Q/ Σ N, ausgezogene Linie).

5 Abflussberechnungen

5.1 Einleitung

Das hier eingesetzte Niederschlag-Abfluss-Modell (NAM) Q_{AREA} wurde am Institut für Hydromechanik und Wasserwirtschaft der ETH Zürich entwickelt und erfasst die bei der Hochwasserentstehung beteiligten Abflussprozesse (Scherrer & Naef, 2003). Dieses Modell ist ein Hilfsmittel, das erlaubt, das Abflussverhalten des EZG auf verschiedene Starkniederschläge rechnerisch zu simulieren und die Reaktion auf seltene meteorologische Bedingungen (Niederschlags-Szenarien) abzuschätzen.

5.2 Grundlagen und Aufbau des Modells QAREA

Die Abbildung 6.1 zeigt die Grundlagen des NAM Q_{AREA}. Das Modell wurde den Verhältnissen entsprechend für den Aabach erstellt. Zusammenfassend die wichtigsten Grundlagen und Eigenschaften des Modells Q_{AREA}:

- Das NAM basiert auf der Klassifizierung der **Abflussbereitschaft** der Teileinzugsgebietsflächen (Abflusstypen, Abb. 6.1b) und den dazugehörenden Abflussreaktionen (Abflussreaktionskurven, Abb. 6.1c).
- Die **Fliesszeiten** bis zum Teileinzugsgebietsausgang (Isochronen) und die Fliesszeiten in den Gerinnen wurden berücksichtigt (Abb. 6.1d).
- **Niederschläge**: Zur Simulation von Landregen aber auch kurzen Gewitterniederschlägen kann das Gebiet gleichmässig überregnet werden oder auch nur Teile davon (Abb. 6.1e).

Ein Schema des eingesetzten Modells ist in Anhang 5 zu finden. Der gefallene Niederschlag wird aufgeteilt in Direktabfluss und in den Boden infiltrierendes Wasser. Das infiltrierte Wasser wird im Boden gespeichert und verzögert wieder abgegeben. Die Reaktion dieser Bodenspeicher wird mit linearen Speichern modelliert. Für jeden Abflusstypen wird eine eigene Speichercharakteristik angenommen. Der Direktabfluss erfährt auf dem Weg ins Gerinne eine Verzögerung durch Retention (Oberflächenspeicher), welche ebenfalls mit einem linearen Speicher simuliert wird.

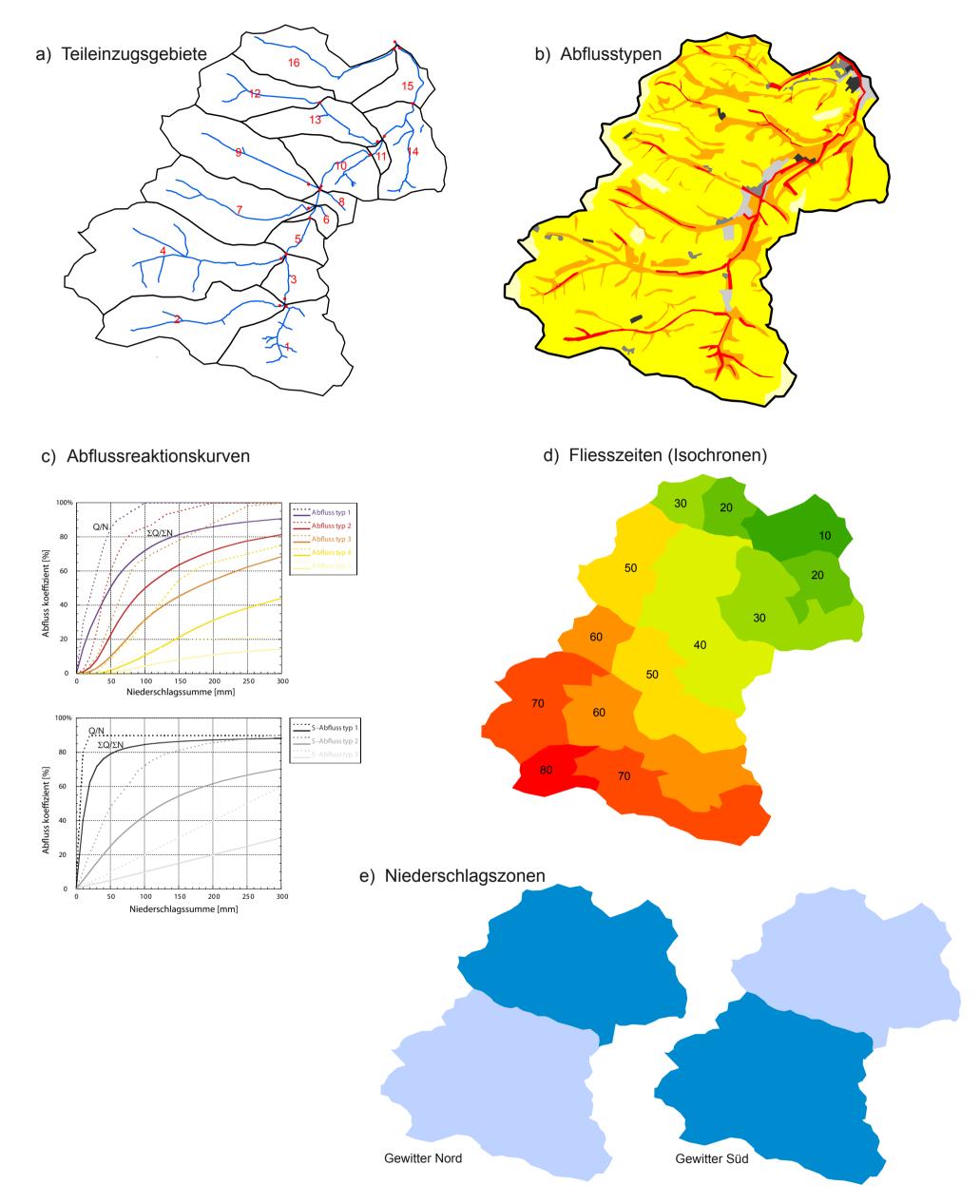


Abb. 5.1: Die Grundlagen des Niederschlag-Abfluss-Modells QAREA:
a) Die Teileinzugsgebiete mit den Berechnungspunkten, b) die Abflusstypen, c) die Abflussreaktionskurven, d) die Fliesszeiten in Minuten (Isochronen),

e) die Niederschlagszonen.

5.3 Modellverifikation

Für die Modelleichung wurden die Hochwasser vom 21./22. August 2005, 21. Juni 2007, 8./9. August 2007, vom 4. Juli 2009, 8. August 2009 und vom 12. Juli 2016 nachgerechnet. Bei diesen Hochwasserereignissen waren folgende Voraussetzungen für eine Modelleichung gegeben:

- Die Abflussspitzen der Hochwasserereignisse konnten rekonstruiert werden. Aus den Recherchen zu den historischen Hochwassern konnten v.a. im Ort Langnau, also für den BP 15, die Abflussspitzen abgeschätzt werden.
- Es konnte die zeitliche Niederschlagsverteilung der hoch aufgelöst messenden Station Langnau für den Niederschlagsinput verwendet werden.
- Es waren Niederschlagsereignisse, welche die ganze Region betrafen, so dass aufgrund der vorliegenden Daten der umliegenden Tagessammler die räumliche Niederschlagsverteilung mittels Interpolation abgeschätzt und für den Niederschlagsinput verwendet werden konnte (Anhang 3).

Die Ergebnisse der Berechnungen sind im Anhang 5 dargestellt. Insgesamt ergibt das Modell plausible Ergebnisse und kann für die Abflussberechnungen (Kap. 5.5) eingesetzt werden.

5.4 Niederschlags-Szenarien

5.4.1 Räumliche Niederschlagsverteilung

Niederschläge haben eine zeitliche (Dauer und Intensität des Niederschlags) und eine räumliche Verteilung (Überregnung des Gebiets). Bei langandauernden Niederschlagsereignissen (6 − 48 h Dauer) wurde angenommen, dass das ganze EZG gleichmässig überregnet wird. Hingegen sind die Zentren von Konvektionszellen, in denen die Niederschlagsmaxima von kurzen Starkniederschlägen (≤ 4 h Dauer) fallen, auf wenige km² begrenzt. Das langgestreckte EZG des Huebbachs mit 12 km² kann von kurzen, lokalen Starkniederschlägen ungleichmässig überregnet werden. Daher wurden zwei räumliche Gewitterszenarien für die Niederschläge mit einer Dauer von vier Stunden oder weniger festgelegt (Abb. 5.1e):

- Gewitterszenario Süd: Die Teileinzugsgebiete 1 bis 7 werden voll, die übrigen Teileinzugsgebiete mit halbierten Niederschlagsintensitäten überregnet.
- Gewitterszenario Nord: Die Teileinzugsgebiete 7 bis 16 werden voll, die übrigen Teileinzugsgebiete mit 59% der Niederschlagsintensitäten überregnet¹.

5.4.2 Zeitliche Niederschlagsverteilung und Niederschlagsintensitäten

Nördlich von Langnau liegt die Regenmessstation Zofingen der MeteoSchweiz, die seit 1892 betrieben wird. In Scherrer AG (2014) wurden diese Daten extremwertstatistisch ausgewertet. Diese Ergebnisse wurden für die Abflussberechnungen der langandauernden Niederschlag-Szenarien verwendet (12 h - 48 h). Weil die Regenmessstation Zofingen nur Tagesniederschläge registriert, sind die Niederschlagsintensitäten für Messintervalle < 24 Stunden unsicher. Auf dem Napf misst die MeteoSchweiz seit 1978 die Niederschläge in hoher zeitlicher Auflösung. Diese Daten wurden in Scherrer AG / Soilcom GmbH (2012) statistisch ausgewertet und für die Abflussberechnungen für die kurzen Landregen und Gewitterszenarien verwendet (0.5 h – 8 h).

¹ Beim Gewitterszenario Süd werden die nicht voll beregneten Teileinzugsgebiete zu 50% beregnet, bei den Gewitterszenarien Nord zu 59%. So ist gewährleistet, dass trotz unterschiedlicher Grösse des voll überregneten Teil-Gebiets bei allen Szenarien gleich viel Niederschlag auf das gesamte EZG fällt.

Bei kurzen Niederschlägen bis 4 h Dauer wurde eine zeitliche Dreiecksverteilung angenommen mit der Niederschlagsspitze nach einem Drittel der Niederschlagsdauer. Für die Niederschläge > 6 h Dauer wurde eine gleichmässige zeitliche Verteilung (Blockregen) verwendet. Tabelle 5.1 zeigt die für die Modellrechnungen verwendeten Werte:

Tab. 5.1: Die für die Modellrechnungen verwendeten Niederschlagswerte der extremwertstatistisch ausgewerteten Stationen Zofingen (1892-2014) bzw. Napf (1978 - 2011).

ausgewerteten Stationen Zomigen (1032-2014) bzw. Napi (1310 - 2011).								
Bezeichnung des	Niederschlags-	Wiederkehr-	Zeitliche	Niederschlags-	Max. Nieder-			
Niederschlags dauer [h]		periode	Verteilung des	menge	schlags-intensität			
		[Jahre]	Niederschlags	[mm]	[mm/10min]			
0.5h30j_dreieck	0.5	30	Dreieck	45	22.3			
1h30j_dreieck	1	30	Dreieck	54	15.8			
2h30j_dreieck	2	30	Dreieck	57	8.9			
4h30j_dreieck	4	30	Dreieck	63	5.1			
6h30j_block	6	30	Blockregen	69	1.9			
8h30j_block	8	30	Blockregen	76	1.6			
12h30j_block	12	30	Blockregen	82	1.2			
24h30j_block	24	30	Blockregen	90	0.6			
48h30j_block	48	30	Blockregen	118	0.4			
0.5h100j_dreieck	0.5	100	Dreieck	65	32.6			
1h100j_dreieck	1	100	Dreieck	75	22.0			
2h100j_dreieck	2	100	Dreieck	79	12.3			
4h100j_dreieck	4	100	Dreieck	85	6.9			
6h100j_block	6	100	Blockregen	91	2.5			
8h100j_block	8	100	Blockregen	99	2.1			
12h100j_block	12	100	Blockregen	105	1.5			
24h100j_block	24	100	Blockregen	115	0.8			
48h100j_block	48	100	Blockregen	153	0.5			
0.5h300j_dreieck	0.5	300	Dreieck	92	46.1			
1h300j_dreieck	1	300	Dreieck	102	29.8			
2h300j_dreieck	2	300	Dreieck	105	16.4			
4h300j_dreieck	4	300	Dreieck	111	9.0			
6h300j_block	6	300	Blockregen	118	3.3			
8h300j_block	8	300	Blockregen	125	2.6			
12h300j_block	12	300	Blockregen	133	1.9			
24h300j_block	24	300	Blockregen	145	1.0			
48h300j_block	48	300	Blockregen	194	0.7			

5.5 Abflussberechnungen

Die Resultate der Modellrechnungen an den 18 Berechnungspunkten (BP) des Huebbachs aufgrund der verschiedenen Niederschlagsszenarien sind in Tabelle 5.2 dargestellt. Für das Huebbach-EZG sind Gewitter-Ereignisse mit dem Schwerpunkt im Oberlauf (Gewitter Süd) von 0.5 h bis 2 h Dauer massgebend (fett markiert). Bei einzelnen Teil-EZG und am untersten Berechnungspunkt BP 18 sind teilweise die Gewitterszenarien mit dem Schwerpunkt im Unterlauf (Gewitter Nord) massgebend.

Tab. 5.2: Die Resultate der Berechnungen mit dem NAM QAREA (BP 1 – BP 9).

Wieder- des Niederschlag Abflussspitzen [m³/s] bei den Berechnungspunkten							ten				
kehr- periode [Jahre]	Nieder- schlags [h]	Niederschlag- szenario	BP 1	BP 2	BP 3	BP 4	BP 5	BP 6	BP 7	BP 8	BP 9
	0.5	Gewitter Nord	0.2	0.2	0.4	0.3	0.7	0.8	0.2	1	1.1
	1	Gewitter Nord	0.2	0.2	0.4	0.3	0.8	0.9	0.2	1.2	1.2
	2	Gewitter Nord	0.2	0.2	0.3	0.3	0.7	0.8	0.2	1.1	0.9
	4	Gewitter Nord	0.2	0.2	0.3	0.3	0.6	0.7	0.2	1.0	0.7
	0.5	Gewitter Süd	1.1	1.1	2.2	1.8	4.2	4.4	1.0	5.5	0.1
30	1	Gewitter Süd	1.3	1.3	2.6	2.2	5	5.3	1.2	6.6	0.2
	2	Gewitter Süd	1.0	1.0	2.1	1.7	3.9	4.2	1.0	5.3	0.1
	4	Gewitter Süd	0.8	0.8	1.7	1.4	3.2	3.5	0.8	4.4	0.1
	6	Blockregen	0.6	0.6	1.2	1.0	2.3	2.5	0.6	3.3	0.5
	8	Blockregen	0.7	0.7	1.3	1.1	2.6	2.8	0.6	3.6	0.6
	12	Blockregen	0.7	0.7	1.4	1.2	2.8	3.0	0.7	3.9	0.6
	24	Blockregen	0.5	0.5	1.0	0.8	1.9	2.1	0.5	2.7	0.4
	48	Blockregen	0.4	0.4	8.0	0.7	1.6	1.9	0.4	2.4	0.4
	0.5	Gewitter Nord	0.6	0.6	1.2	1.0	2.3	2.4	0.6	3.2	3.2
	1	Gewitter Nord	0.7	0.7	1.4	1.2	2.7	2.9	0.7	3.8	3.1
	2	Gewitter Nord	0.5	0.6	1.1	0.9	2.1	2.3	0.5	3.0	2.2
	4	Gewitter Nord	0.4	0.4	0.9	0.7	1.7	1.9	0.4	2.6	1.6
	0.5	Gewitter Süd	3.5	3.4	6.5	5.7	12.6	13.0	3.2	16.4	0.3
100	1	Gewitter Süd	3.4	3.4	6.8	5.8	13.0	13.6	3.3	17.1	0.4
	2	Gewitter Süd	2.5	2.5	5.0	4.3	9.7	10.2	2.4	12.8	0.3
	4	Gewitter Süd	1.8	1.8	3.6	3.1	7.1	7.6	1.7	9.6	0.2
	6	Blockregen	1.2	1.2	2.3	2.0	4.5	4.8	1.1	6.2	1.1
	8	Blockregen	1.2	1.2	2.4	2.1	4.7	5.0	1.1	6.4	1.1
	12	Blockregen	1.2	1.2	2.3	2.0	4.6	5.0	1.1	6.3	1.1
	24	Blockregen	0.7	0.7	1.4	1.2	2.7	3.0	0.7	3.8	0.6
	48	Blockregen	0.5	0.6	1.1	1.0	2.2	2.5	0.5	3.1	0.5
	0.5	Gewitter Nord	1.6	1.6	3.1	2.6	5.9	6.2	1.5	8.2	5.6
	1	Gewitter Nord	1.5	1.5	3.0	2.5	5.6	6.0	1.4	7.9	5.3
	2	Gewitter Nord	1.1	1.1	2.2	1.9	4.3	4.6	1.1	6.1	3.9
	4	Gewitter Nord	8.0	0.9	1.7	1.4	3.3	3.6	0.8	4.9	2.8
	0.5	Gewitter Süd	6.0	5.9	11.7	10.2	22.8	23.8	5.7	29.9	0.9
300	1	Gewitter Süd	5.8	5.8	11.6	10.0	22.3	23.3	5.5	29.3	0.8
	2	Gewitter Süd	4.3	4.3	8.6	7.6	16.8	17.7	4.1	22.2	0.6
	4	Gewitter Süd	3.1	3.1	6.2	5.5	12.4	13.3	3.0	16.7	0.5
	6	Blockregen	2.0	2.1	4.1	3.6	8.0	8.5	1.9	10.8	1.9
	8	Blockregen	2.0	2.0	4.0	3.4	7.7	8.2	1.9	10.5	1.8
	12	Blockregen	1.8	1.8	3.6	3.1	7.1	7.6	1.7	9.7	1.6
	24	Blockregen	0.9	0.9	1.8	1.5	3.6	3.9	0.8	4.9	0.8
	48	Blockregen	0.7	0.7	1.4	1.2	2.8	3.1	0.7	3.9	0.6

Tab. 5.3: Die Resultate der Berechnungen mit dem NAM QAREA (BP 10 – BP 18).

Wieder- kehr- Nieder Niederschlag- Abflussspitzen [m³/s bei den Berechnungsput								ten			
periode [Jahre]	Nieder- schlags [h]	szenario	BP 10	BP 11	BP 12	BP 13	BP 14	BP 15	BP 16	BP 17	BP 18
	0.5	Gewitter Nord	2.0	2.4	0.8	1.3	3.7	4.0	4.3	0.7	4.9
	1	Gewitter Nord	2.4	2.9	0.9	1.5	4.4	4.8	5.2	0.9	6.0
	2	Gewitter Nord	1.9	2.4	0.7	1.2	3.7	4.1	4.5	0.8	5.1
	4	Gewitter Nord	1.7	2.2	0.6	1.0	3.2	3.7	4.1	0.7	4.7
	0.5	Gewitter Süd	5.6	5.7	0.1	0.2	5.8	5.9	6.0	0.1	6.1
30	1	Gewitter Süd	6.7	6.9	0.1	0.2	7.0	7.1	7.2	0.1	7.3
	2	Gewitter Süd	5.3	5.5	0.1	0.2	5.6	5.7	5.8	0.1	5.9
	4	Gewitter Süd	4.5	4.6	0.1	0.1	4.7	4.8	4.9	0.1	5.0
	6	Blockregen	3.7	4.1	0.4	0.7	4.7	5.0	5.2	0.4	5.6
	8	Blockregen	4.1	4.5	0.4	0.7	5.2	5.5	5.8	0.5	6.2
	12	Blockregen	4.4	4.8	0.5	0.8	5.6	6.0	6.2	0.6	6.8
	24	Blockregen	3.1	3.4	0.3	0.6	4.0	4.2	4.4	0.4	4.8
	48	Blockregen	2.6	3.0	0.3	0.5	3.4	3.7	3.9	0.4	4.2
	0.5	Gewitter Nord	5.9	6.8	2.4	3.7	10.6	11.5	12.1	2.1	13.7
	1	Gewitter Nord	6.8	7.7	2.4	3.8	11.4	12.4	13.1	2.3	15.2
	2	Gewitter Nord	5.2	6.1	1.7	2.8	9.0	9.9	10.6	1.9	12.3
	4	Gewitter Nord	4.1	5.0	1.2	2.1	7.2	8.2	8.9	1.5	10.3
	0.5	Gewitter Süd	16.6	16.8	0.3	0.4	17.2	17.3	17.5	0.3	17.7
100	1	Gewitter Süd	17.4	17.6	0.3	0.5	18.1	18.2	18.4	0.3	18.7
	2	Gewitter Süd	13.0	13.3	0.2	0.4	13.6	13.8	13.9	0.3	14.2
	4	Gewitter Süd	9.7	10.0	0.2	0.3	10.3	10.4	10.6	0.2	10.8
	6	Blockregen	7.1	7.7	0.8	1.3	8.9	9.4	9.8	0.8	10.6
	8	Blockregen	7.4	8.0	0.8	1.3	9.3	9.8	10.2	0.9	11.1
	12	Blockregen	7.3	7.9	0.8	1.3	9.2	9.8	10.1	0.9	11.1
	24	Blockregen	4.3	4.8	0.4	0.8	5.6	6.0	6.2	0.6	6.8
	48	Blockregen	3.5	3.9	0.4	0.6	4.5	4.9	5.1	0.5	5.6
	0.5	Gewitter Nord	13.4	15.0	4.1	7.0	21.8	23.5	24.5	4.7	29.3
	1	Gewitter Nord	13.1	14.8	4.0	6.8	21.6	23.4	24.5	4.7	29.2
	2	Gewitter Nord	9.9	11.5	2.9	5.1	16.8	18.6	19.6	3.7	23.2
	4	Gewitter Nord	7.6	9.2	2.1	3.8	13.1	14.9	15.9	2.8	18.6
	0.5	Gewitter Süd	30.7	31.1	0.7	1.2	32.2	32.5	32.8	0.8	33.6
300	1	Gewitter Süd	30.0	30.5	0.7	1.1	31.5	31.9	32.2	0.8	32.9
	2	Gewitter Süd	22.7	23.2	0.5	0.9	24.0	24.3	24.6	0.6	25.2
	4	Gewitter Süd	17.0	17.5	0.4	0.7	18.1	18.4	18.7	0.5	19.2
	6	Blockregen	12.5	13.4	1.4	2.2	15.6	16.5	17.0	1.4	18.3
	8	Blockregen	12.1	13.1	1.3	2.1	15.2	16.1	16.6	1.4	18.0
	12	Blockregen	11.1	12.0	1.2	2.0	14.0	14.9	15.4	1.4	16.7
	24	Blockregen	5.6	6.2	0.6	1.0	7.2	7.7	8.0	0.8	8.7
	48	Blockregen	4.4	4.9	0.4	8.0	5.7	6.1	6.3	0.6	6.9

5.6 Hochwasserrückhaltebecken und Volumenberechnungen

Es besteht die Absicht, ein Teil des bei Hochwasser anfallenden Abflusses unmittelbar oberhalb von Langnau auszuleiten und direkt zur Wigger zu führen. Eine andere Möglichkeit wäre, die Abflussspitzen entlang des Huebbachs mit Hochwasserrückhaltebecken (HRB) zu dämpfen. Ideale Beckenstandorte mit grossen Volumen sind aufgrund des herrschenden Gefälles allerdings rar und es müssten mehrere, hintereinander liegende HRB in Betracht gezogen werden.

Im Folgenden werden in Tabelle 5.4 die anfallenden Abflussvolumen an verschiedenen potentiellen Beckenstandorten tabellarisch dargestellt. Dabei wurden jeweils die maximalen Volumen der verschiedenen Szenarien ermittelt und es wurden keine Drosselwassermengen berücksichtigt. Die Volumen erscheinen dadurch sehr gross. Bei einer Berücksichtigung von Drosselwassermengen würden sich die Volumen drastisch verkleinern. In einem zweiten Schritt könnte die Wirkung von verschiedenen Drosselwassermengen und mehrerer hintereinander liegender HRB auf die Abflüsse unterhalb untersucht werden und Vorschläge zur Optimierung aufgezeigt werden.

Tab. 5.4: Die grössten Abflussvolumen (Maxima der verschiedenen Szenarien, ohne Berücksichtigung von Drosselwassermengen) an verschiedenen potentiellen Beckenstandorten im EZG des Huebbachs.

ВР	Teil – Einzugsgebiet / Gerinneabschnitt potentielles HRB (Volumen)	HQ ₃₀ [10 ³ m ³]	HQ ₁₀₀ [10³ m³]	HQ ₃₀₀ [10 ³ m ³]
1	Huebbach oberhalb Hueb (1.3 km²) HRB Huebberg (ca. 2'000 m³)	54	68	82
2	Stampfibach (Fronhoferbach) oberhalb Hueb (1.3 km²) HRB Stampfibach (ca. 3'000 m³)	55	69	84
6	Huebbach unterhalb Sagi (5.4 km²) HRB Chrützstross (ca. 24'000 m³)	240	302	363
8	Huebbach Geissmatte (6.9 km²) HRB Geissmatte (ca. 41'000 m³)	314	394	472
9	Guggerbach oberhalb Richenthal (1.2 km²) HRB Guggerbach (ca. 7'500 m³)	49	62	75
11	Huebbach unterhalb Richenthal, Lischmatte (8.7 km²) HRB Lupfe (ca. 28'500 m³)	417	518	618
12	Altetelbach, Oberlauf (0.8 km²) HRB Altetel oben (ca. 15'000 m³)	35	45	193

6 Hochwasserabflüsse definierter Jährlichkeit

Um die massgebenden Hochwasserabflüsse festzulegen, wurden im Sinne einer Synthese die Erkenntnisse aus den historischen Hochwassern und die Resultate der Modellrechnungen in einem Frequenzdiagramm zueinander in Beziehung gesetzt. Dies liefert ein Gesamtbild und zeigt den Unsicherheitsbereich der Hochwasserabschätzung auf. Bei der Festlegung der massgebenden Abflüsse verspricht dieses Vorgehen eine grössere Verlässlichkeit. Für den Huebbach in Langnau (BP 15) lassen sich die wesentlichen Punkte der einzelnen Untersuchungen wie folgt zusammenfassen:

Ergebnisse der Erkundung historischer Hochwasser (Kap. 3):

Die Recherchen zu historischen Hochwassern eröffnen einen Beobachtungszeitraum von ca. 100 bis 130 Jahren. Das grösste Hochwasser in diesem Zeitraum ereignete sich am 24.6.1931 (Abb. 6.1). Die Abflussspitze am Huebbach in Langnau wurde für dieses Ereignis auf 15 – 20 m³/s geschätzt. Die Wiederkehrperiode dieses Hochwassers beträgt also ca. 100 – 130 Jahre. Zwei grosse Hochwasser mit Abflussspitzen von ca. 12 - 15 m³/s ereigneten sich innerhalb weniger Tage am 16. und am 20.6.1986. Seit dem Bachausbau in den 1920er-Jahren waren diese beiden Hochwasser nach dem Ereignis vom 24.6.1931 die beiden Grössten (Wiederkehrperiode ca. 33 – 50 Jahre). Aus den letzten 100 Jahren sind weitere vier mittlere Hochwasser des Huebbachs mit Abflussspitzen von ca. 6 - 9 m³/s bekannt (Wiederkehrperiode ca. 14 – 25 Jahre). Die grösseren Hochwasser am Huebbach wurden vor allem durch Gewitter ausgelöst.

Ergebnisse der Beurteilung der Abflussreaktion (Kap. 4): Im EZG gehören nur 23.6% den rasch bis leicht verzögert reagierenden Abflusstypen 1-3, resp. Siedlungsabflusstypen 1-3 an. Aufgrund dieser Verteilung kann die Abflussbereitschaft des Huebbach-EZG als schwach beurteilt werden.

Ergebnisse der Berechnungen mit dem Niederschlag-Abflussmodell (Kap. 5):

Die Ergebnisse der Abflussberechnungen ermöglichen zusammen mit den Ergebnissen der historischen Erkundungen die Abschätzung seltener Hochwasser. Gemäss Modellrechnungen ergibt sich beim BP 15 aus den grössten drei mit dem NAM berechneten Werten für ein HQ_{30} 5.9 – 7.1 m^3/s , für ein HQ_{100} 13.8 – 18.2 m^3/s und für ein HQ_{300} 24.3 – 32.5 m^3/s (Abb. 6.1).

Hochwasserabflüsse bestimmter Jährlichkeit:

Die roten Linien in Abbildung 6.1 markieren den Unsicherheitsbereich der vorgeschlagenen Hochwasserabflüsse bestimmter Jährlichkeit. Die historischen Erkundungen bestätigen die berechneten Werte weitgehend. Lediglich für das HQ_{30} schlagen wir aufgrund der historischen Erkenntnisse höhere Werte als die Berechneten vor. In Tabelle 6.1 sind die vorgeschlagenen HQ_x aufgeführt. Am BP 15 schlagen wir für das HQ_{30} einen Bereich von 7-10 m³/s vor, für das HQ_{100} 14 - 19 m³/s und für das HQ_{300} 25 – 33 m³/s.

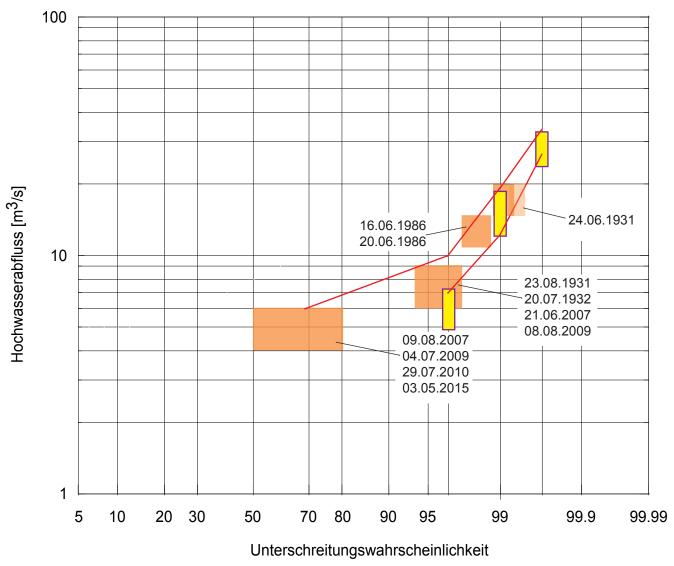


Abb. 6.1: Frequenzdiagramm des Huebbachs in Langnau bei Reiden (Berechnungspunkt BP 15). Eingetragen sind die Ergebnisse der Modellrechnungen (gelb) sowie die Resultate der historischen Betrachtung (orange). Die roten Linien markieren die vorgeschlagenen Werte der Hochwasserabflüsse bestimmter Jährlichkeit.

Tab. 6.1: Die am Huebbach in Langnau ermittelten Hochwasserabflüsse bestimmter Jährlichkeit.

ВР	Teil – Einzugsgebiet / Gerinneabschnitt	HQ ₃₀ [m³/s]	HQ ₁₀₀ [m³/s]	HQ ₃₀₀ [m³/s]
1	Huebbach oberhalb Hueb (1.3 km²)	1.3 – 1.8	2.7 – 3.7	4.6 – 6.1
2	Stampfibach (Fronhoferbach) oberhalb Hueb (1.3 km²)	1.3 – 1.8	2.6 – 3.5	4.5 – 6.0
3	Huebbach nach Zusammenfluss mit Stampfibach (2.6 km²)	2.6 – 3.7	5.2 – 7.1	9.0 – 11.9
4	Ränzligebach oberhalb Sagi (2.2 km²)	2.2 – 3.1	4.5 – 6.1	7.8 – 10.4
5	Huebbach oberhalb Sagi nach Zusammenfluss mit Ränzligebach (5.1 km²)	4.9 – 7.0	10.0 – 13.6	17.5 – 23.2
6	Huebbach unterhalb Sagi (5.4 km²)	5.2 – 7.5	10.5 – 14.2	18.3 – 24.2
7	Elbach oberhalb Zusammenfluss mit Huebbach (1.2 km²)	1.2 – 1.7	2.5 – 3.4	4.4 – 5.8
8	Huebbach Geissmatte (6.9 km²)	6.5 – 9.3	13.2 – 17.9	23.0 – 30.4
9	Guggerbach oberhalb Richenthal (1.2 km²)	1.2 – 1.7	2.5 – 3.3	4.3 – 5.7
10	Huebbach in Richenthal nach Zusammenfluss mit Guggerbach (8.1 km²)	6.6 – 9.4	13.4 – 18.2	23.6 – 31.2
11	Huebbach unterhalb Richenthal, Lischmatte (8.7 km²)	6.8 – 9.7	13.5 – 18.4	23.9 – 31.6
12	Altetelbach, Oberlauf (0.8 km²)	0.9 – 1.3	1.8 – 2.5	3.2 – 4.2
13	Altetelbach, Mündung in Huebbach (1.4 km²)	1.5 – 2.1	2.9 – 4.0	5.4 – 7.1
14	Huebbach nach Zusammenfluss mit Altetelbach (10.2 km²)	6.9 – 9.9	13.9 – 18.9	24.8 – 32.7
15	Huebbach oberhalb Langnau (11.0 km²)	7 - 10	14 - 19	25 - 33
16	Huebbach vor Zusammenfluss mit Weierbächli (11.4 km²)	7.1 – 10.1	14.2 – 19.2	25.2 – 33.3
17	Weierbächli (1.0 km²)	0.9 – 1.3	1.8 – 2.4	3.6 – 4.8
18	Huebbach unterhalb Langnau nach Zusammenfluss mit Weierbächli (12.4 km²)	7.2 – 10.3	14.4 – 19.5	25.8 – 34.1

7 Hochwasserrückhaltebecken

Es besteht die Absicht, ein Teil des bei Hochwasser anfallenden Abflusses unmittelbar oberhalb von Langnau auszuleiten und direkt zur Wigger zu führen. Eine andere Möglichkeit wäre, die Abflussspitzen entlang des Huebbachs mit Hochwasserrückhaltebecken (HRB) zu dämpfen. Ideale Beckenstandorte mit grossen Volumen sind aufgrund des herrschenden Gefälles allerdings rar und es müssten mehrere, hintereinander liegende HRB in Betracht gezogen werden.

Im Folgenden werden in Tabelle 7.1 die anfallenden Abflussvolumen an verschiedenen potentiellen Beckenstandorten tabellarisch dargestellt. Dabei wurden jeweils die maximalen Volumen der verschiedenen Szenarien ermittelt und es wurden keine Drosselwassermengen berücksichtigt. Die Volumen erscheinen dadurch sehr gross. In einem zweiten Schritt wurde deshalb die Wirkung mehrerer hintereinander liegender HRB auf die Abflüsse unterhalb untersucht. Dabei wurden die HRB Chrützstross (BP6, 24'000 m³), Geissmatte (BP8, 41'000 m³) und Lupfe (BP11, 28'500 m³) berücksichtigt². Tabelle 7.2 zeigt die Resultate der Modell-rechnungen an den Berechnungspunkten (BP) entlang des Huebbachs unter Berück-sichtigung dieser drei HRB.

Es zeigt sich, dass die HRB einen grossen dämpfenden Einfluss auf die Hochwasserspitzen des Huebbachs haben könnten. So könnte die Hochwasserspitze eines HQ_{100} in Langnau von $14 - 19 \,\mathrm{m}^3$ /s im Ist-Zustand auf ca. $6 - 7 \,\mathrm{m}^3$ /s reduziert werden. Abbildung 7.1 veranschaulicht die Wirkung der Becken graphisch durch den Vergleich der berechneten Hochwasserspitzen mit Berücksichtigung der HRB und ohne HRB.

Tab. 7.1: Die grössten Abflussvolumen (Maxima der verschiedenen Szenarien, ohne Berücksichtigung von Drosselwassermengen) an verschiedenen potentiellen Beckenstandorten im EZG des Huebbachs.

ВР	Teil – Einzugsgebiet / Gerinneabschnitt potentielles HRB (Volumen)	HQ ₃₀ [10 ³ m ³]	HQ ₁₀₀ [10 ³ m ³]	HQ ₃₀₀ [10 ³ m ³]
1	Huebbach oberhalb Hueb (1.3 km²) HRB Huebberg (ca. 2'000 m³)	54	68	82
2	Stampfibach (Fronhoferbach) oberhalb Hueb (1.3 km²) HRB Stampfibach (ca. 3'000 m³)	55	69	84
6	Huebbach unterhalb Sagi (5.4 km²) HRB Chrützstross (ca. 24'000 m³)	240	302	363
8	Huebbach Geissmatte (6.9 km²) HRB Geissmatte (ca. 41'000 m³)	314	394	472
9	Guggerbach oberhalb Richenthal (1.2 km²) HRB Guggerbach (ca. 7'500 m³)	49	62	75
11	Huebbach unterhalb Richenthal, Lischmatte (8.7 km²) HRB Lupfe (ca. 28'500 m³)	417	518	618
12	Altetelbach, Oberlauf (0.8 km²) HRB Altetel oben (ca. 15'000 m³)	35	45	193

² Die Volumenangaben stammen aus dem Variantenstudium von Niederer und Pozzi

Tab. 7.2: Die Resultate der Berechnungen mit dem NAM QAREA bei Berücksichtigung der HRB.

Wieder- kehr-	Dauer des	Niedersebles	Abflussspitzen [m³/s] bei den Berechnungspunkten								
periode [Jahre]	Nieder- schlags [h]	Niederschlag- szenario	BP 5	BP 6	BP 8	BP 10	BP 11	BP 14	BP 15	BP 16	BP 18
	0.5	Gewitter Nord	0.7	0.1	0.2	1.2	0.3	1.6	1.9	2.2	2.8
	1	Gewitter Nord	0.8	0.1	0.2	1.4	0.3	1.9	2.3	2.7	3.5
	2	Gewitter Nord	0.7	0.2	0.2	1.1	0.3	1.6	2.0	2.4	3.1
	4	Gewitter Nord	0.6	0.2	0.2	1.0	0.4	1.4	1.9	2.3	2.9
	0.5	Gewitter Süd	4.2	0.3	0.3	0.5	0.4	0.6	0.6	0.8	0.9
30	1	Gewitter Süd	5.0	0.4	0.4	0.6	0.5	0.7	0.8	0.9	1.0
	2	Gewitter Süd	3.9	0.4	0.5	0.6	0.5	0.7	0.8	0.9	1.0
	4	Gewitter Süd	3.2	0.4	0.5	0.6	0.6	0.8	0.8	1.0	1.0
	6	Blockregen	2.3	0.6	0.6	1.1	0.8	1.5	1.8	2.0	2.4
	8	Blockregen	2.6	0.8	0.7	1.3	1.0	1.7	2.0	2.3	2.7
	12	Blockregen	2.8	1.3	1.0	1.6	1.2	2.1	2.4	2.7	3.2
	24	Blockregen	1.9	1.1	0.9	1.3	1.1	1.7	2.0	2.2	2.6
	48	Blockregen	1.7	1.2	1.3	1.6	1.5	2.0	2.3	2.4	2.8
	0.5	Gewitter Nord	2.3	0.2	0.3	3.5	0.5	4.3	5.2	5.9	7.5
	1	Gewitter Nord	2.7	0.3	0.4	3.5	0.6	4.5	5.6	6.3	8.2
	2	Gewitter Nord	2.1	0.3	0.4	2.6	0.6	3.5	4.6	5.3	6.9
	4	Gewitter Nord	1.7	0.3	0.4	2.0	0.7	2.9	3.9	4.6	6.0
	0.5	Gewitter Süd	12.6	2.8	1.1	1.4	0.9	1.4	1.5	1.7	1.9
100	1	Gewitter Süd	13.1	4.0	2.1	2.5	1.6	2.1	2.3	2.5	2.7
	2	Gewitter Süd	9.7	3.5	1.9	2.2	1.5	1.9	2.1	2.3	2.5
	4	Gewitter Süd	7.1	3.3	2.1	2.3	1.7	2.1	2.2	2.4	2.6
	6	Blockregen	4.5	2.0	1.6	2.7	1.8	3.1	3.6	4.0	4.8
	8	Blockregen	4.7	2.3	2.0	3.1	2.3	3.7	4.2	4.6	5.4
	12	Blockregen	4.6	2.7	2.5	3.6	2.9	4.3	4.9	5.2	6.1
	24	Blockregen	2.7	1.8	1.7	2.3	2.0	2.8	3.2	3.5	4.1
	48	Blockregen	2.2	1.7	1.8	2.3	2.2	2.9	3.2	3.4	3.9
	0.5	Gewitter Nord	5.9	0.5	0.5	6.1	1.2	8.5	10.5	11.7	15.5
	1	Gewitter Nord	5.6	0.6	0.6	5.9	1.6	8.6	10.8	12.0	16.0
300	2	Gewitter Nord	4.3	0.5	0.6	4.5	1.6	6.9	8.9	10.2	13.4
	4	Gewitter Nord	3.3	0.6	0.6	3.4	1.5	5.5	7.3	8.4	11.0
	0.5	Gewitter Süd	22.8	11.5	9.5	10.4	8.0	9.3	9.6	10.0	10.6
	1	Gewitter Süd	22.4	12.5	10.5	11.3	9.0	10.2	10.5	10.9	11.5
	2	Gewitter Süd	16.8	10.0	8.5	9.1	7.5	8.4	8.7	9.1	9.6
	4	Gewitter Süd	12.4	8.5	7.5	8.0	6.6	7.3	7.6	7.9	8.4
	6	Blockregen	8.0	4.7	4.4	6.3	5.0	7.3	8.1	8.7	10.0
	8	Blockregen	7.7	4.9	4.8	6.6	5.5	7.7	8.6	9.2	10.5
	12	Blockregen	7.1	4.9	5.0	6.6	5.9	8.0	8.9	9.4	10.7
	24	Blockregen	3.6	2.5	2.6	3.4	3.1	4.2	4.7	5.0	5.7
	48	Blockregen	2.8	2.3	2.5	3.1	3.1	3.9	4.4	4.6	5.2

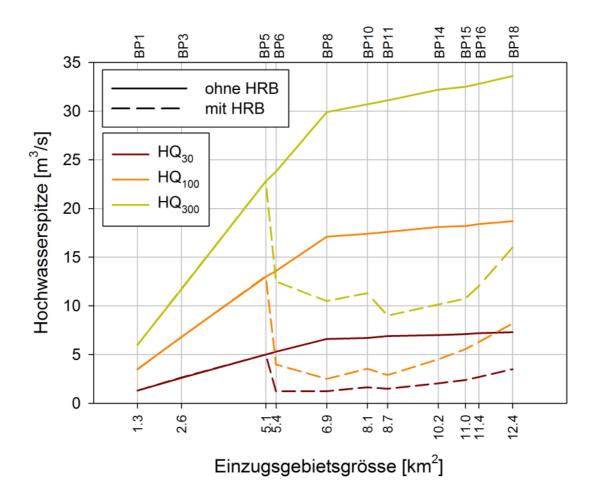


Abb. 7.1: Berechnungen mit dem NAM QAREA: Maximale Abflussspitzen entlang des Huebbachs bei Berücksichtigung der HRB im Vergleich mit den Berechnungsergebnissen ohne HRB.

Scherrer AG Hydrologie und Hochwasserschutz

Dr. Simon Scherrer

Dr. Peter Kienzler

Reinach, Dezember 2018

Sachbearbeiter: Dr. Peter Kienzler, Dipl. Hydrologe Uni Freiburg i. Br.

Dr. Simon Scherrer, Dipl. Geograph Uni Basel

Anhang

Anhang 1: Historische Hochwasser

Anhang 2: Tagesniederschläge

Anhang 3: Räumliche Niederschlagsverteilungen

Anhang 4: Bodenprofile

Anhang 5: Modellaufbau und Modellverifikation

Anhang 6: Niederschlagsstatistiken Zofingen (1883 – 2012) und Napf (1978 - 2011)

	Niederschlag		Quelle
1711	?		Huber (1996)
1811, Juli	?	Reiden, Wigger: Überschwemmung ganzer Landstriche bis zu 80 cm tief und mehr.	Huber (1996)
März	Dauerregen	Reiden, Wigger: Wigger überschwemmte und riss Brücke von Mehlsecken und den rechtsseitigen neu angelegten Damm mit sich und schuf eine neue Krümmung. (Buch "Langnau im Wiggertal")	
1852, 17./18.9.	Dauerregen	Dieses Hochwasser gilt als eines der grössten des schweizerischen Mittellandes. Die Überschwemmungsgebiete reichten vom Boden- bis zum Genfersee. Ursache waren zweiundfünfzigstündige, ununterbrochene Regenfälle mit Hochgewitter. () Luzern: Verwüstungen durch die Wigger, Pfaffern, Rot und Kleine Emme.	
		1618. September. Im Überschwemmungsjahr 1852 führten auch verschiedene Flüsse im Kanton Luzern Wasserschäden herbei. Überschwemmungen ereigneten sich besonders im Nordwesten des Kantons im Gebiet der Roth, Pfaffnern und Wigger. Bei Altishofen wurde die Brücke über die Wigger zerstört, ebenso die Brücke über die Emme in Malters. Das Suhrental von Sursee bis Triengen glich einem grossen See. Der Baldegger- und Hallwilersee traten über die Ufer.	Rommel (1936)
		Luzern, 18. Sept. (Korr.) Meine gestern ausgesprochene Hoffung, der in Schlossen fallende Regen werde aufhören, hat sich nicht erwahrt. Die Verheerungen in einigen Kantonstheilen müssen entsetzlich sein. Durch das ganze Wiggerthal ist das Wasser ausgetreten, und das ganze Dorf Nebikon und theilweise Schötz stehen unter Wasser	
1876, 1012.6.	Dauerregen	1012. Juni. Die zahlreichen und starken Niederschläge, die einen grossen Teil der Schweiz heimsuchten, verursachten auch im Kanton Luzern beträchtliche Schäden an Kulturen Strassen, Brücken und Wuhrungen. Die Schäden trafen insbesondere das Amt Willisau, daneben auch einige Gemeinden anderer Ämter.	Rommel (1936)
		Reiden, Wigger: Grosse Überschwemmung durch Wigger. Uferschutzbauten weggespült. Beschädigung der Brücke bei Mehlsecken. Zerstörung der Sagenbrücke.	
		Zofingen. Infolge anhaltenden Regenwetters ist die Wigger über die Ufer getreten und hat vielorts ihre Dämme weggerissen. Es ist jedenfalls gut, dass man ihr durch die Kanäle einen Theil ihres Wassers entziehen und ihre Wuth ein wenig dämmen kann.	Zofinger Tagblatt (13.6.1876)
		Auch die Luthern und Wigger sind ausgetreten und haben nicht unbedeutenden Schaden angerichtet.	Das Vaterland (14.6.1876)
1881, 1./2.9.	Dauerregen	1./2. September. Infolge der starken Regengüsse, die in der Nordschweiz niedergingen, führten auch die aargauischen Gewässer Hochwasser, wodurch Strassen und Brücken zerstört und zahlreiche Gebiete überschwemmt wurden. Hauptsächlich die Suhr richtete arge Verheerungen an.	
		Über die Wasserverheerungen im Wiggerthal wird uns aus Reiden geschrieben: "Wer heute den 2. September von der aussichtsreichen Höhe der Kommende zu Reiden seine Blicke über die Ebene der Wigger schweifen lässt, schaut, einige höhere Punkte als Oasen ausgenommen, eine unabsehbare Wasserfläche. Das Regenwetter des vorausgegeangenen Tages und der letzten Nacht hat den Thalfluss dermassen gehoben, dass im Fabrikkanal des Herrn Besitzers Hilfiker ein Durchbruch stattfand, in Folge dessen Wiesen und Ackerfelder weithin unter Wasser liegen, der Weg zur Bahnstation unterbrochen ist und jenseits derselben Hauseigenthümer an die Rettung ihrer Fahrhabe denken mussten. Die Strasse nach Langnau ist stellenweise knietief unter Wasser gesetzt und die verbindende Brücke, aus massiv steinernen Brückenköpfen und eiserner Beschienung bestehend, wird kaum sich zu halten vermögen. Ganze grosse Wuhrentheile, Bäume, Balken mit sich führend, drängt sich die Wigger unter der schmalen Passage durch, um nachher in uferschwallenden Wellen die hergebrachten Materien weiter dem Bett entlang oder in die aufstossenden Grundstücke zu tragen. Die Fabrikgebäude in der Rothfarb werden derart von den Fluthen umspült, dass nur ein fester Fuss zu ihnen Zutritt erhält. Bei der Mühle zu Mehlsecken haben zwei querüberliegende Kirschbäume das Flussbett ge-	(4.9.1881)
1893.	Gewitter	sperrt, dass von da die Wasser in neuem Übertritt über die Fläche sich Zofingen zuwälzen. 14. und 15. Juni. Hagelwetter bzw. Wolkenbruch in Richenthal. Schaden an Kulturen, Feldfrüchten, Ufern, Brücken und Gebäuden. 23 Besit-	
1693, 14./15.6.	COWILLOI		Rommel (1936)

Datum	Niederschlag		Quelle
1910,	Dauerregen	1820. Januar. Mehrere Gegenden des Kantons, besonders das Amt Willisau, wurden von schweren Wasserschäden heimgesucht.	Lanz-Stauffer &
19./20.1.		20./21. Januar. Die Regengüsse der vorhergehenden Tage gingen in einen massigen, nassen Schneefall über, der im Kanton bedeutende Schäden an Obstbäumen und Wald anrichtete.	, ,
		Überschwemmungen vor allem in der Westschweiz infolge einsetzender Schneeschmelze verbunden mit reichlichen Niederschlägen. [] In der Innerschweiz wurden die Kantone Uri (u.a. Verklausung der Reuss durch die Bristenlaui mit Durchbruch und Flutwelle), Obwalden und Luzern (Entlebuch, Willisau, Sursee) getroffen.	(1991)
		Wassernot in Reiden. Das Unwetter des letzten Monats, das vielerorts so verheerend eingegriffen, hat auch in Reiden seine harten Spuren zurückgelassen. Von den gelben Wassermassen der Wigger und des Dorfbaches, welche beide am 19. vorigen Monats abends über die Ufer traten, wurde das Dorf hart bedrängt. In kurzer Zeit war das ganze Gebiet "Unterwasser" unter Wasser gesetzt. Ein Teil der Feuerwehr wurde aufgeboten. Das Wasser stieg von Stunde zu Stunde und wandte sich nun auch dem Ausserdorfe zu, das ebenfalls bald überschwemmt war. In der Nacht vom 19. auf den 20. erreichte das Wasser stellenweise eine Höhe von einem Meter. Unser Bild veranschaulicht einen Teil der Überschwemmung im Ausserdorf. Strasse und umliegendes Gelände blieben bis zum 20. mittags für Fussgänger unpassierbar.	mannkeist.ch
		Reiden. (Einges.) Viele Jucharten Mattland stehen unter Wasser. Die unteren Fabrikräume Lang standen standen unter Wasser. Die Feuerwehr wurde aufgeboten. [] Richenthal. (Einges. vom 20. ds.) Bei Landwirt Lütolf in Mehlsecken musste letzte Nacht das Vieh geflüchtet werden; das Wasser stand ca. 1 Meter hoch im Stall. Auch das Elektrizitätswerk Mehlsecken stand unter Wasser. Auch in Langnau trat der Dorfbach über die Ufer und setzte mehrere Häuser unter Wasser. Heute morgen musste die Post zu Pferd befördert werden, da die Strasse von Richenthal und Langnau bis Reiden nicht fahrbar war.	(22.1.1910)
		Reiden. (Korr.) Hier hat die Wigger furchtbar gewütet und das Gelände bis über den Bahnhof hinaus unter Wasser gesetzt. Die Züge hatten Mühe zu passieren und die Arbeiten am Geleisebau wurden stark beschädigt. Die neue Unterführung glich einem Kanal. Im Hochwasser der Wigger trieb ein Schweinestall mit zwei toten Schweinen. Viele Wuhre wurden zerstört. Die Fabrikbetriebe mussten eingestellt werden. Der Schaden auf Wiesen und Äckern ist gross. In Reiden und Dagmersellen wurde Sturm geläutet und die Feuerwehr musste in Aktion treten. Das Wasser drang in Wohnhäuser und Ställe.	(21.1.1910)
		Wasserschaden im oberen Wiggertal (Korr.) [] Auch in Langnau trat der Dorfbach über die Ufer und setzte mehrere Häuser unter Wasser. Donnerstags [20.1.1910] musste die Post zu Pferd befördert werden, da die Strasse von Richenthal und Langnau nicht fahrbar war.	Zofinger Tagblatt (22.1.1910)
1910, 14./15.6.	Dauerregen	14./15. Juni. Die grossen Wasserverheerungen, die in diesen Tagen die Schweiz heimsuchten, richteten auch im Kanton Luzern erhebliche Schäden durch Überschwemmungen an.	Lanz-Stauffer & Rommel (1936)
1920, März	Dauerregen	Reiden, Wigger: Wigger trat über die Ufer und überschwemmte grosse Flächen. Wird als zweites Jahrhunderthochwasser bezeichnet.	Huber (1996)
1931, 24.6.	Gewitter	24. Juni, nachmittags zwischen 5 und 6 Uhr. Schweres Gewitter im Nordwesten des Kantons, zwischen Rot und Wigger, von Zell an abwärts, besonders über den Gemeinden Reiden und Langnau. In Langnau trat der Dorfbach über die Ufer, überschwemmte die Strasse und verschiedene Keller und Wohnungen. Beträchtliche Schäden an Mobiliar, besonders an Maschinen, die in einem Schuppen lagerten. Vom Hochwasser wurden auch die Brücken und Bachufer beschädigt. Den Akten des Schweizerischen Fonds konnte ein Schaden von Fr. 11,665 entnommen werden, von welchem Fr. 1145 auf Gebäude, Fr. 3905 auf Fahrnis, Fr. 1875 auf technische Bauwerke und Fr. 4740 auf Kulturland entfielen (Regierungsratsbericht 1930 und 1931, S. 99 Fondsmaterialien Vaterland, Luzern, Nr. 150, vom 26. Juni 1931).	

Datum	Niederschlag	Angaben zum Ereignis	Quelle
Sutu	, wood out and	Am 25. Juni [vermutlich 24.6. gemeint] und 23. Aug. 1931 fielen im Gebiete des Richenthalerbaches sehr starke Gewitter. Der Bach schwoll reissend an. Das maximale Hochwasser bei Langnau zu 36 m³/sek, d.h. zu 3 m³/sek und km² berechnet. Weiter oben war die spezifische Abflussmenge noch grösser, schätzungsweise rund 5 m³/sek km². Diese Hochwasser verursachten längs des ganzen Bachlaufes Überschwemmungen und Uferanrisse, so beim Kurhaus Richenthal, bei Matten, unterhalb der Kirche Richenthal, bei Lupfen und im Dorfe Langnau. Nach diesen Wasserschäden dachte man an eine durchgehende Bachkorrektion, doch wurde in der Folge das Projekt mit Rücksicht auf die Finanzlage der Subventionsgeber und der wirtschaftlichen Lage des Perimeters fallen gelassen und die Wuhrpflichtigen haben seither die nötigsten Wiederinstandstellungsarbeiten nach landläufiger Art von sich aus besorgt. Beim Kurhaus Richenthal besitzt jedoch das Bachbett eine ganz ungünstige Linienführung mit scharfen Kurven und geringem Gefälle. Zudem ist es eng eingedolt. Bei jedem grösseren Hochwasser tritt hier	Kt. Luzern (1932)
		der Bach über die Ufer und überschwemmt die Untergeschossräumlichkeiten des Kurhauses, den Kurhausplatz, den Garten und die Gemein-	
		destrasse Richenthal-Ebersecken. Eine Korrektion des Bachlaufes in diesem Abschnitte ist daher dringend nötig. Trotz grosszügig konzipierten Durchlässen überschwemmte der Huebbach.	Huber (1996)
		Mit diesem zweiten unheilvollen Hochwassereinbruch zeigen sich Parallelen zum Jahre 1931. Damals soll die Gemeinde ebenfalls zweimal	
			(23.6.1986)
		Schweres Unwetter über dem Luzerner Hinterland: Am Mittwochabend hat sich über dem Luzerner Hinterland ein schweres Unwetter entla-	
		den. Mehrere Gewitterzüge ballten sich zusammen und wüteten mit bisher nie gekannter Heftigkeit über der Gegend. Die Dorfbäche wurden zu reissenden Strömen, die grosse Schlamm- und Schuttmengen mitführten und das wertvolle Kulturland fusshoch überschwemmten. Der Sachschaden an den Pflanzungen in den Gärten und auf den Feldern ist sehr gross. Aus Richenthal wird uns gemeldet: Ein solches Unwetter haben die ältesten Leute noch nie erlebt. Wolkenbruchartig ging der Regen nieder. Blitz und Donner lösten sich ab. Bald kam der Dorfbach gefahrdrohend. Er führte eine Wassermenge, die das Bord überflutete, in die Gärten, über die Felder und in die Häuser eindrang. Von der ungeheuren Gewalt des Wassers erhält man einen Begriff, wenn man weiss, dass die grosse Brücke unterhalb des Gasthofes zum Lamm vollständig weggerissen wurde. Im Kurhaus Richenthal drang das Hochwasser ebenfalls in die Gebäulichkeiten. Der Herd in der Küche war überflutet. Es war unmöglich, die Kurgäste mit dem Nachtessen zu verpflegen. In den späteren Abendstunden brachten die Feuerwehren Hilfe. Besonders dankt man der Feuerwehr Reiden, die mit ihrer Motorspritze die Wasser- und Schlammfluten aus den Häusern und Kellern herausgepumpt hat. Heute Donnerstag früh sieht es in Richenthal und den angrenzenden Gebieten traurig aus. Weite Gebiete sind mit Sand und Steinen überdeckt. Der Schaden an den Kulturen ist gross. Auch in Langnau hat das Wetter verheerend gewütet. Der Dorfbach, der sonst metertief unter dem oberen Bordrand fliesst, hat mächtige Wassermengen gebracht und alles überschwemmt. Beim Kreuz ist die Brücke weggerissen worden. Überall wurde das Bachbord unterspült. Wackerer Helfer eilten mit Pferden in den Wald, fällten Tannen und schleppten diese rasch herbei, um das gefährdete Bachbord zu schützen. Aus der Gartenwirtschaft wurden die Tische und Stühle fortgeschwemmt. Das Wasser brachte viel Holz mit. In der Sägerei Richenthal wurden grosse Holzvorräte durch das reissende Hochwasser fortgetragen. Die Feuerwehren waren durch Sturmläuten aufgebo	

Datum	Niederschlag	Angaben zum Ereignis	Quelle
		Das Unwetter vom Mittwoch Abend: Aus Langnau schreibt man uns: Am Mittwochabend nach 5 Uhr entlud sich über unserer Gegend ein hef-	
		tiges langandauerndes Gewitter mit wolkenbruchartigem regen. Der von Richenthal kommende Dorfbach schwoll in kurzer zeit zum reissen-	blatt, 26.6.1931
		den Strome an. Bei der Wirtschaft zum Kreuz drangen die Wassermassen durch alle Gebäulichkeiten, Holz, Most- und Beizefässer, Wagen,	·
		alles durcheinander mit sich fortreissend. Die Kühe standen im Stall bis zum Bauch im Wasser. Der eingemauerte Dorfbach vermochte die	
		Wassermassen nicht zu fassen, er lief durch die ganze Dorfstrasse hinunter 50 cm hoch, die tiefer liegenden Wohnungen und Keller füllend.	
		Die Feuerwehr von Reiden musste zur Hilfeleistung alarmiert werden, um mit der Motorspritze das Wasser auszupumpen. In den Gärten sieht	
		es traurig aus. Die ältesten Leute können sich nicht erinnern, so etwas erlebt zu haben. Beim Kurhaus in Richenthal hat das Unwetter	
		schlimm gehaust.	
		Einer weiteren Zuschrift entnehmen wir: Am Mittwoch ist, über die Höhen von Ebersecken kommend, gegen Richenthal-Langnau sich hinzie-	
		hend, ein Orkan hereingebrochen wie seit Menschengedenken noch nie. Es entstand Schaden an den Kulturen und Häusern, hauptsächlich	
		in den Kellern. In Langnau wurde vor einigen Jahren der Dorfbach korrektioniert. Kritiker fanden das Bachbett zu gross. Am Mittwoch ver-	
		mochte nun der Bach nicht alles Wasser abzuführen, es lief fast ebenso viel die Strasse hinunter wie durch den Bach. Die Motorspritzen von	
		Langnau und Reiden leisteten gute Dienste. Den Reidernern danken wir für die freundnachbarliche Hilfe. Glücklicherweise dauerte das Un-	
		wetter nicht lange, aber gleichwohl ist grosser Schaden entstanden. Besonders arg gehaust hat das Wasser beim Restaurant Kreuz (Besitzer	
		Herr Ernst Marfurt, Gemeindeammann, Mosterei und Getränkehandel). Dort steht ein Schuppen, unter dem der Richenthalerbach durchfliesst,	
		und der mit einer Betonbrücke versehen war. In diesem Schuppen lagerten Wagen, Machinen, gefüllte Einmachgläser, Korbflaschen und klei-	
		nere Fässer, gefüllt mit Birnenträsch. Etwa 1500 Liter von letzterm sind dem Hochwasser zum Opfer gefalle. Die Betonbrücke stürzte ein, Ma-	
		schinen, Fässer und Wagen stürzten in die reissenden Fluten und stauten die Wassermenge. Die Feuerwehr hatte hier eine immense Arbeit,	
		um all das den Fluten zu entreissen. Diese Arbeit gestaltete sich hier besonders schwierig, wenn man bedenkt, dass gefüllte Einmachfässer	
		mit 2000-30000 Liter Inhalt geborgen werden musste.	
		Der Wirbelsturm nahm auf dem Hocken-Plateau östlich Richenthal, westlich Ebersecken seinen Anfang. Dort stiessen drei Wetter zusammen,	
		es wogte und wirbelte, alle wilden Elemente entfesselten sich, alle bösen Geister halfen mit. Über 200 Bäume fielen dem Sturm zum Opfer	
		und Dächer wurden abgedeckt, so dass sich die Leute nicht mehr aus den Häusern hinaus getrauten. Dann kam der sintflutartige Regen und	
		das meiste Wasser floss in den Talkessel von Richenthal gegen Langnau zu, alles überflutend. Es war das nicht ein Regen oder grosser Was-	
		seranlauf, sondern ein Wildbach, ein wüster Strom, alles verheerend. Der Schaden ist gross. Am meisten litten das Kurhaus und die Säge in	
		Richenthal und das Kreuz in Langnau. Auch die Strasse durch das Dorf Langnau wurde arg mitgenommen, der Gesslerkanal hielt stand. Aber	
		es gibt in dem Elend einen Trost: Auf Regen folgt Sonnenschein.	
		Niederschlag in Luzern: 45 mm, Weggis: 51 mm, Eigenthal: 58 mm	Meier (1939)
1931,	Gewitter	Am 25. Juni und 23. Aug. 1931 fielen im Gebiete des Richenthalerbaches sehr starke Gewitter. Der Bach schwoll reissend an. Das maximale	
23.8.		Hochwasser bei Langnau zu 36 m³/sek, d.h. zu 3 m³/sek und km² berechnet. Weiter oben war die spezifische Abflussmenge noch grösser,	
		schätzungsweise rund 5 m³/sek km². Diese Hochwasser verursachten längs des ganzen Bachlaufes Überschwemmungen und Uferanrisse, so	
		beim Kurhaus Richenthal, bei Matten, unterhalb der Kirche Richenthal, bei Lupfen und im Dorfe Langnau. Nach diesen Wasserschäden dach-	
		te man an eine durchgehende Bachkorrektion, doch wurde in der Folge das Projekt mit Rücksicht auf die Finanzlage der Subventionsgeber	
		und der wirtschaftlichen Lage des Perimeters fallen gelassen und die Wuhrpflichtigen haben seither die nötigtsen Wiederinstandstellungsar-	
		beiten nach landläufiger Art von sich aus besorgt. Beim Kurhaus Richenthal besitzt jedoch das Bachbett eine ganz ungünstige Linienführung	
		mit scharfen Kurven und geringem Gefälle. Zudem ist es eng eingedolt. Bei jedem grösseren Hochwasser tritt hier der Bach über die Ufer und	
		überschwemmt die Untergeschossräumlichkeiten des Kurhauses, den Kurhausplatz, den Garten und die Gemeindestrasse Richenthal-Eber-	
		secken. Eine Korrektion des Bachlaufes in diesem Abschnitte ist daher dringend nötig.	
		Langnau: Das Unwetter von gestern Sonntag hat wieder grossen Schaden angerichtet. Zum zweiten Mal ist der Dofbach über die Ufer getre-	Zofinger Tag-
		ten. Die Arbeiten für den Belag sind in vollstem Gange, haben aber stark gelitten. Die Ursache dieser Katastrophen liegt darin, weil einige Brü-	
		ten. Die Arbeiten für den Belag sind in vollstem Gange, haben aber stark gelitten. Die Ursache dieser Katastrophen liegt darin, weil einige Brücke zu wenig Wasserdurchfluss haben. So staut das Wasser, überbordet und läuft durch die Dorfstrassen hinunter. Hoffentlich wird jetzt Remedur geschaffen.	

	Niederschlag	Angaben zum Ereignis	Quelle
1932, 20. Juli	Gewitter	20. Juli. Das Gewitter, welches mehrere Kantone der Zentralschwelz heimsuchte, brachte auch verschiedenen luzernischen Gemeinden-Schaden. Bei Ennethorw wurde dle Brünigstrasse überschwemmt und überführt. Im Norden des Kantons, besonders über Ebersecken, Büron, Richenthal und Langnau, ergossen sich wolkenbruchartige Niederschläge. Zahlreiche Schäden an Bachufern und Strassen sowie an Kulturenboden (Vaterland, Luzern, Nr.170, vom 21. Juli 1932).	Rommel (1936)
		Grosses Hochwasser in Richenthal bei Reiden.	Meier (1939)
		Schwere Wetterschäden: Am Mittwoch gingen über dem Schweizerischen Mittelland und dem Alpennordfuss schwere Gewitter nieder, die da und dort grosse Schäden an den Kulturen und Verkehrsanlagen hervorriefen. Besonders betroffen wurde das Freiamt, die Gegend von Schwyz, Schaffhausen und die Unterseegegend zwischen Ermatingen und Steckborn.	blatt, 22.7.1932
1936, 25.Juni		Grosses Hochwasser im Raume von Fischbach, Grossdietwil, Altbüron, Roggliswil, Richenthal, Altishofen, Ebersecken. Grosse Schäden. Heftiges Gewitter, wolkenbruchartiger Regen	Meier (1939)
1972, 22.11.	Dauerregen	Reiden, Mehlsecken: Im Wiggergebiet (4000 m³ Geröll im Mündungsgebiet, Korrektionsarbeiten mit Kosten in der Höhe von 50 Mio Fr.; Wiggersanierung), Luthergebiet, Rotbachgebiet und im Gebiet der Kleinen Emme Bachausbrüche, Überschwemmung von Gebäuden, Strassen und Wiesen, verheerende Schäden an Kulturland, Strassen und Brücken; Erdschlipfe (wo?). Wird als grösste Flut seit 100 Jahren bezeichnet. Betroffene Orte: a) im Wiggergebiet: Menzberg, Hergiswil, Willisau, Daiwil, Tröllental, Alberswil, Schötz, Egolzwil, Nebikon, Altishofen, Dagmersellen, Reiden, Mehlsecken; b) im Lutherngebiet: Luthern, Zell, Gettnau; c) im Rotbachgebiet: Grosswangen, Ettwiswil; d) im Gebiet der Kleinen Emme: Gemeinde Malters u.a. (hier arge Uferschäden). Im Nachtrag aufgeführte Orte: Romoos, Werthenstein und Wolhusen (Schäden an Güterstrassen und Hangrutschungen u.a.). Meteo: innerhalb von 10 Tagen d.h. vom 1120.11.1972 190 mm Regen (wo genau?).	
		Reiden, Wigger: Im Wiggergebiet, Lutherngebiet, Rotbachgebiet und im Gebiet der Kleinen Emme Bachausbrüche, Überschwemmungen von Gebäuden, Strassen und Wiesen. Verheerender Schaden an Kulturland, Strassen und Brücken. Grösste Flut seit 100 Jahren. Seither Wigger verbaut, insgesamt für 50 Mio. Franken. Die Wigger trat auch zwischen Reiden und Langnau über die Ufer und überschwemmte Wiesland und Äcker. Einzelne Einfamilienhäuser und Gehöfte sind kaum noch erreichbar.	
1975, 30.8.	Gewitter	Reiden, Reidermoos, Langnau bei Reiden: im Gebiet Ausbrüche der Wigger, der Rot des Rothbaches und zahlreicher Nebenbäche (nicht aber der Luthern); auch zahlreiche Erdschlipfe (speziell in der Region Zell (hier Schadenkosten weit über 1 Mio Fr.), Hüswil und Gettnau). Ganze Quartiere überschwemmt; schwere Schäden an Häusern, Mobiliar, Strassen und Kulturland (sowie an Tieren). Anmerkung: Region Luthern und Hergiswil weitgehend verschont geblieben (dank Verbauungen). Ursache (Meteo) Gewitter im Quellgebiet des Napfes sowie sintflutartige Regenfälle in der Nacht.	WSL (2018)
		Reiden, Reidermoos, Wigger, Rot, Rothbach: Im Gebiet Ausbrüche der Wigger, der Rot, des Rothbaches und zahlreicher Nebenbäche. (nicht aber der Luthern). Ganze Quartiere überschwemmt; schwere Schäden an Häusern, Mobiliar, Strassen, Kulturland (sowie an Tieren). Region Luthern und Hergiswil weitgehend verschont geblieben (dank Verbauung). Daraufhin Verbauung der Wigger.	
1979, 7.11.	Dauerregen	Langnau-Huebbach, Langnau-Leimgrubenbach, Langnau-Altentalerbach: Ausbrüche von Altentalerbach, Leingruberbach und Huebbach (genannte Bäche separat aufgenommen); Keller, Strassen und Land (Wässermatten) überschwemmt, Verbindungsstrasse Mehlsecken - Brittnau unter Wasser (2 ha grosser See).	, ,
1980,	Dauerregen	Reiden, Langnau bei Reiden Langnau-Mehlsecken: Ausbruch Huebbach bei Mehlsecken, Strasse überschwemmt.	GIUB (1998) WSL (2018)
3.2.	Dauerregerr	Languau-weinsecken. Adsbruch Huebbach bei weinsecken, Strasse überschweinnt.	VVOL (2010)
	Dauerregen	Langnau/ Brittnau: Zwischen Langnau und Brittnau Strasse und Felder überschwemmt wegen Ausbruch des Hubbaches (Langnauer Dorfbach).	WSL (2018)
	Gewitter	Richenthal: Überschwemmungen, Bachausbrüche (und Brücken beschädigt?). Anmerkung: Im Kanton LU über 400 Notrufe; Schäden dürften die Millionengrenze überschreiten; an insgesamt 250 bis 300 Gebäuden Schäden (Schäden auch an Strassen, Brücken und Bachufern). Gewitter z. T. mit Hagel.	WSL (2018)

Datum	Niederschlag		Quelle
		Überschwemmung durch Huebbach. Wurde daraufhin im 2000 ausgebaut, jedoch ungenügend. Im Kanton Luzern über 100 Schadenmeldun-	Ereigniskataster
		gen vorwiegend im Wiggertal. Grosse Schäden. Jeder Graben wurde zum Bach, Keller geflutet.	
		Die Gewitterregen vom 16./17. und 20. Juni 1986 lösten am Huebbach grosse Hochwasser aus. Der Huebbach trat vielerorts über die Ufer,	
		überschwemmte Baugebiete und Kulturland und richtete erhebliche Schäden an. Die Seitenbäche, vor allem der Frohnhoferbach, auch	
		Stampfibach genannt, der Ränzligerbach und der Elbach, schwollen stark an und überschwemmten grössere Gebiete. Die entstandenen	
		Schäden sind auch an diesen Seitenbächen beträchtlich.	
		Riesige Unwetterschäden im Nordwesten des Kantons Luzern: Ein besonders starkes Gewitter wütete am Montagabend in der Gegend von	
			blatt, 18.6.1986
		Enorme Schäden nach Unwetter in verschiedenen Regionen: Das Ende eines schönen Tages: Heftige Sommergewitter haben am Montag-	
		abend ein Todesopfer gefordert und vor allem in den Kantonen Bern und Luzern Schäden in Millionenhöhe angerichtet. Die starken Nieder-	
		schläge liessen zahlreiche Bäche über die Ufer treten. Felder, Strassen, Bahnanlagen und Wohngebiete wurden überschwemmt. Besonders	
		stark betroffen waren die Regionen um Zäziwil (BE), Jegenstorf (BE), wo ein zwölfjähriger Knabe in einem Bach ertrank, sowie die luzerni-	
		schen Gemeinden Pfaffnau, Langnau und Richenthal. [] Hochwasser in Langnau und Richenthal: Einer der ersten schönen Junitage nahm	
		für viele Bewohner in Richenthal und Langnau ein böses Ende. Machtlos mussten sie mit ansehen, wie das Hochwasser sich freie Bahn ver-	
		schaffte, in Keller und Wohnräume eindrang und überall schwere Schäden anrichtete. Am schwersten betroffen wurden Hausbesitzer in der	
		Lupfen und im Dorf. Die tobenden Wassermassen versperrten sich den Weg durch mitgerissene Holzstämme oft selbst, führten Hausratsge-	
		genstände und Strassenabsperrungen mit und spülten ganze Uferböschungen weg. Die Feuerwehr wurde vom Hochwasser ebenso über-	
		rascht wie die betroffenen Hausbesitzer. Das Unheil war so plötzlich da, dass keine vorsorglichen Massnahmen getroffen werden konnten.	
		Erst als der Wasserspiegel sank, konnte mit dem Auspumpen der gefüllten Keller und den Aufräumungsarbeiten begonnen werden. Der Ein-	
		satz der Feuerwehr dauerte bis Mitternacht und wurde am Dienstag fortgesetzt. Schmutz und Schlamm auf den Feldern und der Dorfstrasse zeugten am sonnigen Dienstagmorgen von den verheerenden Ereignissen des Vorabends. Viele Hauseigentümer waren damit beschäftigt,	
		ihre in Mitleidenschaft gezogenen Keller und Wohnräume zu säubern – ein trauriges Bild. Überschwemmungen ähnlichen Ausmasses sind nur noch der älteren Langnauer Generation bekannt, datieren sie doch von 1932 und 1934. (vermutlich ist 1931 gemeint).	
		Fotos aus Langnau: «Die Langnauer Dorfstrasse – ein grosser Fluss» und «Ein nachdenklicher Gemeindepräsident Beck von Langnau besichtigt ein beschädigtes Strassenstück.»	
l	1	Sichligt ein beschäutigtes Strassenstück.»	

Datum	Niederschlag	Angaben zum Ereignis	Quelle
Datain	incucioniag	Das Unwetter vom 16. Juni in Richenthal: «Arg wüteten die Wassermassen»: Auch in Richentahl richtete das Unwetter vom 16. juni grosse	
		Schäden an. Tagblatt-Korrespondent Franz Brugger berichtet als Augenzeuge vom Unglückstag in seiner Gemeinde: Der Morgennebel am	
		16. Juni und die Schwüle im Verlaufe des Tages liessen für den Abend nichts Gutes erwarten. Kaum war gegen 5 Uhr abends von den Bau-	
		ern das Heu eingebracht, brach ein Gewitter los von aussergewöhnlicher Intensität. Blitze zuckten und ein länger anhaltender Wolkenbruch	
		liess die sonst sanft dahinfliessenden Hubbach und Ellbachtalbach zu reissenden Strömen anschwellen, alles mitreissend was sich den Flu-	
		ten entgegenstellte. Der Schwerpunkt des Wolkenbruchs lag in den Gemeindegebieten Hub, Fronhofen, Linig, Renzlingen, Ellbach. Einzig der	
		Bach aus dem Guggertal verursachte keinen Schaden, weil in diesem Tal die Niederschläge weniger stark waren. Als 68 Jahre alter Bauer	
		kann ich mich noch erinnern, dass im Sommer des Jahres 1932 ein gleich verheerendes Unwetter über Richenthal wütete. (vermutlich ist	
		1931 gemeint). Seitdem aber blieb glücklichwerweise Richenthal von solch schweren Heimsuchungen verschont. Es fällt mir überaus schwer,	
		lüber die Schäden zu berichten, die dieses Unwetter anrichtete. Freu ich mich doch immer wenn ich über Land gehe, an den Kulturen und	
		friedlich dahinfliessenden Bächen. Am Abend des 16. Juni, als das Gewitter vorüber war, boten sich leider meinem Auge Bilder in der Land-	
		schaft von Richenthal, die mich sehr traurig stimmten. Ich fragte mich im Innern immer wieder, warum musste dieses Unglück meine geliebte	
		Heimat heimsuchen. Zu Fuss und mit dem Fahrrad war ich nach dem Gewitter drei Stunden unterwegs. Weil im Jahr 1932 grosse Schäden	
		an den Uferböschungen des Hubbachs zu verzeichnen waren, interessierte mich sehr, ob diesmal dies auch der Fall sei. Um so mehr, da der	
		Hubbach und der Ellbachtalbach, schätzungsweise auf einer Länge von 600 Meter das Land unserer Liegenschaft berührt. Zu meiner Beruhi-	
		gung konnte ich feststellen, dass diesmal weniger Land von den reissenden Fluten weggefressen wurde. Aber immerhin, die entstandenen	
		Schäden sind dennoch gross. Ich mache als Korrespondent nicht gerne in Sensation. Bei diesem Unwetter aber brachte der Hubbach in sei-	
		nen Fluten viel mehr Holz mit als im Jahr 1932. Diesmal war aber die Überflutung von Land, Kulturen und Kellern und Gärten schwerer. Bei	
		der Sägerei Kneubühler wurde viele Langholz auf die Gemeindestrasse geschwemmt und Saghölzer fortgeschwemmt Richtung Richenthaldorf und Lupfen. Wegen dem Langholz war die Gemeindestrasse Richtung Kurhaus längere Zeit unpassierbar. Arg wüteten die Wassermas-	
		sen im Dorf. Keller wurden überflutet, vorher schön gepflegte Gärten total zerstört und die Humuserde fortgeschwemmt. Ziemlich grosse	
		Schäden entstanden aber auch durch Überschwemmungen, Versandungen und Ausschwemmungen von Gras-Getreide- und Hackfrüchtekul-	
		turen. Im Liniggebiet gab es zudem Erdschlipfe. Arg mitgenommen wurden vom Unwetter die Strassen ins Ellbach - Renzligertal - Hubgebiet -	
		Fronhofen - Linig. In der Lupfe im Gebiet Gemeindegrenze zu Langnau wurde der Gärtnereibetrieb Brugger geschädigt. Glücklicherweise hiel-	
		ten die vor einigen Jahren durchgeführten Bachverbauungen mit schweren Steinen stand. Hätten sie nicht standgehalten, wären grosse Schä-	
		den. Ich schliesse diesen traurigen Tatsachenbericht und spreche allen Unwettergeschädigten mein tiefes Mitleid aus.	
1986,	Gewitter	Reiden, Langnau, Richenthal: Überschwemmungen, Hochwasserschäden; u. a. Hallenbad überschwemmt. Anmerkung: Im Kanton Luzern	WSL (2018)
20.6.		insgesamt 112 Notrufe (vor allem im Luzerner Hinterland und im Wiggertal). Schäden in Millionenhöhe; 45-Minuten-Gewitterregen; 'jeder Gra-	
		ben wurde zu einem Bach, Kanalisationen und Abläufe mit Geschiebe verstopft, Keller etc. überschwemmt.	
		Reiden-Sportanlage: Sportanlage von Reiden überflutet.	
		Anmerkung zu genereller Wetterlage von Ereignis 86.24 (aus TAGES ANZEIGER vom 23.06.1986): "Auf die Häufung von schweren lokalen	
		Unwettern angesprochen, sagte ein Sprecher der Schweizerischen Meteorlogischen Anstalt in Zürich, dass die Schäden deshalb so gross sei-	
		en, weil es während der Gewitter der letzten Tage und Wochen relativ windstill gewesen sei. Die Gewitterfront sei dadurch nicht wie üblich	
		weitergezogen, sondern habe sich jeweils über einzelnen Regionen während längerer Zeit entladen. Zudem hätten eher östliche Winde ge-	
		herrscht, was angesichts der Ausrichtung der Vegetation und baulicher Infrastruktur erfahrungsgemäss zu grösseren Schäden führe als die	
		häufigeren Westwindgewitter."	
		Überschwemmung durch Huebbach. Wurde daraufhin im 2000 ausgebaut, jedoch ungenügend. Im Kanton Luzern über 100 Schadenmeldun-	∟reigniskataster
		gen vorwiegend im Wiggertal. Grosse Schäden. Jeder Graben wurde zum Bach, Keller geflutet.	7-II 0 D###!
		Das vierte schwere Unwetter innert Wochenfrist ereignete sich am 20. Juni. [] Im Kanton Luzern wurden vor allem das Hinterland und das	
			berger (1987) GIUB (1998)
l	I	reluen, Langhau, Zen, Flanhau	(1990)

Datum	Niederschlag		Quelle
		Die Gewitterregen vom 16./17. und 20. Juni 1986 lösten am Huebbach grosse Hochwasser aus. Der Huebbach trat vielerorts über die Ufer,	RR Kt. Luzern
		lüberschwemmte Baugebiete und Kulturland und richtete erhebliche Schäden an. Die Seitenbäche, vor allem der Frohnhoferbach, auch	(1987)
		Stampfibach genannt, der Ränzligerbach und der Elbach, schwollen stark an und überschwemmten grössere Gebiete. Die entstandenen	
		Schäden sind auch an diesen Seitenbächen beträchtlich.	
			Zofinger Tagblati
		Grosse Überschwemmungen im unteren Wiggertal: Langnau schon wieder betroffen. Bereits zum zweiten Mal innert vier Tagen über-	(23.6.1986)
		schwemmte der Dorfbach am Freitag [20.6.1986] weite Teile der Gemeinde Langnau. Auch die Seitenbäche aus dem Altenthal und dem Ge-	
		biet Weier führten gewaltige Wassermengen. Überall mussten grosse Schäden festgestellt werden. Die Feuerwehrleute, unterstützt von Ka-	
		meraden aus Zofingen und Dagmersellen leisteten zwar einen beherzten Einsatz, doch konnten sie die Wassermengen nicht "bändigen". Die	
		Zivilschutzräume im Schulhaus standen rund 30 Zentimeter unter Wasser und diverses Material wurde beschädigt. [] Schon um 18 Uhr am	
		Freitagabend setzten erste kleinere Gewitter ein. Kurz nach 19 Uhr ergoss sich aber während längerer Zeit ein wahrer Wolkenbruch über wei-	
		te Gebiete des unteren Wiggertals. [] Feuerwehralarm wurde ausgelöst, doch hatten die Feuerwehrleute keine Chance gegen die gewalti-	
		gen Wassermassen des Hubbaches. Wohl versuchten sie, gefährdete Objekte zu schützen, doch die Bemühungen fruchteten leider in vielen	
		Fällen nicht. Ein zweites Mal innert vier Tagen mussten zahlreiche Dorfbewohner mitansehen, wie das reissende Wasser in ihre Keller ein-	
		drang, ihre Wohnräume überschwemmte und enormen Schaden anrichtete. [] Schwer in Mitleidenschaft gezogen wurde das Restaurant	
		Kreuz. [] Die bereits schwer beschädigte Verbindungsstrasse nach Richenthal wurde nochmals auf einer Strecke von rund hundert Metern	
		unterspült. Der Asphaltbelag musste noch während der Nacht weggeräumt werden, damit die Strasse wieder befahren werden konnte. [] Mit	
		diesem zweiten unheilvollen Hochwassereinbruch zeigen sich Parallelen zum Jahre 1931. Damals soll die Gemeinde ebenfalls zweimal arg in	
		Mitleidenschaft gezogen worden sein, als der Hubbach über die Ufer trat. []	
		Im Luzerner Hinterland waren die Gemeinden Zell, Fischbach, Grossdietwil, Reiden und Richenthal am stärksten von den neuerlichen Unwet-	
		tern betroffen. Jeder Graben und jede Strasse sei nach einem dreiviertelstündigen Gewitterregen zu einem mächtigen Bach angeschwollen,	
		heisst es in einer Polzeimitteilung. Kanalisationen und Abläufe wurden mit Geröll und Geschiebe verstopft; an Gebäuden und Kulturen ent-	
		standen erneut riesige Schäden. Rekonstruktion Abflüsse HW 1986:	Niederer & Poz-
		1. Q = 15 m/s Huebbach Langnau (Oberhalb Pt. 465) 2. Q = 20 m³/s Huebbach Langnau (Pt. 470)	zi, undatiert
		3. Q = 12 m³/s Huebbach Richenthal nach Einmündung Guggerbach	
			Hermann Keist
		Film- und Fotodumannen der beiden flochwasser 1966.	Heinrich Häfliger
		Detaillierte Schadenpläne entlang des Huebbachs und der Seitenbäche, kartierte Ausuferungen	Tiefbauamt Lu-
			zern (1987)
		Wir hatten immer wieder Hochwasser, aber bei uns war es nicht so schlimm. Nur einmal war es schlimm, das ist aber sicher schon 30 Jahre	
		her. Kann sein, dass es 1986 war, ja (auf direkte Nachfrage). Und einmal kam das Wasser von unten in den Keller, aber das war nicht vom	
			Langnau
		Beim Hochwasser in den 80er Jahren lief das Wasser in die Häuser, nicht direkt vom Bach, aber es kam von hinten , weil es hier über diese	
			Huebbach in
		2. as. 25. as. apate. 3	Langnau
		Wir hatten schon öfters Wasser im Stall. Beim Hochwasser vor 30 Jahren war es am schlimmsten.	Herr Joller, An-
			wohner Ränzli-
			gebach
1994, 25.6.	Gewitter		WSL (2018)
25.0.		Langnau bei Reiden	GIUB (1998)
	I.	Lunghuu boi Noluon	(1990)

Datum	Niederschlag	Angaben zum Ereignis	Quelle
		Erneut heftige Gewitter: Alle Feuerwehren der Region wurden alarmiert: Am Samstagabend gegen 20 Uhr entlud sich auch über dem nördlichen Teil des Kantons Luzern ein heftiges Gewitter. Durch die starken Windböen wurden Bäume entwurzelt und Stromleitungen heruntergerissen, wodurch grössere Gebiete zeitweise ohne Strom waren. In Mehlsecken wurde das Dach eines Wohnhauses beschädigt. Auf der Strecke Reiden – Pfaffnau – St. Urban war der Verkehr durch umgestürzte Bäume behindert. Kantonsstrasse Langnau – Richenthal gesperrt: Die Strecke Langnau – Richenthal musste bis gegen 24 Uhr gesperrt werden. Ein Erdrutsch und Bäume blockierten die Strasse. Für die Absicherung und Räumung der Strasse mussten die Feuerwehren von Langnau und Richenthal aufgeboten werden. Zur Behebung weiterer Gewitterschäden mussten die Feuerwehren von Altishofen, Dagmersellen, Ebersecken, Reiden, Pfaffnau und Wikon alarmiert werden. Sturmschäden im Langnauer Wald: Das gewaltige gewitter, das sich am Samstagabend über dem Wiggertal entlud, richtete auch in Langnau	blatt, 27.6.1994
		schwere Schäden an. Besonders betroffen wurden einzelne Wälder, wo der Sturmwind zahlreiche Bäume entwurzelte oder abknickte. Die erforderlichen Aufräumarbeiten werden mit Bestimmtheit noch sehr viele zeit beanspruchen. Unser Foto: Die Feuerwehr Langnau unter der Leitung von Alfred Schürch leistete eine sehr speditiven Einsatz bei den Aufräumarbeiten. (Foto: Emil Stöckli)	
1994, 18.7.	Gewitter	Reiden: Überschwemmungen. Anmerkung: Total 50 Feuerwehreinsätze in der Region (Gemeinden Zofingen, Rothrist, Oftringen-Küngoldingen, Safenwil, Murgenthal, Strengelbach, Wikon, Aarburg und Reiden).	WSL (2018) GIUB (1998)
1994, 6.8.	Gewitter	Reiden, Langnau bei Reiden: Überschwemmungen. Anmerkung: Im Kanton LU mehr als 100 Schadenmeldungen, vorwiegend im Wiggertal.	WSL (2018)
		Sintflutartige Gewitter: Überschwemmungen im nordöstlichen Amt Willisau: Am vergangenen Samstagabend (6.8.1994) ist vor allem der nordöstliche teil des Amtes Willisau von starken Regenfällen, verbunden mit Sturmböen und teilweise mit Hagelschlag, heimgesucht worden. In zahlreichen Gemeinden stand die Feuerwehr merere Stunden im Grosseinsatz. [] Innerhalb einer halben Stunde wurde in Langnau eine Regenmenge von 40 Litern pro Quadratmeter registriert. Bäche schwollen innert Kürze um einen Meter an.	
		Eiergrosse Hagelkörner: Schäden von mindestens fünf Millionen Franken: Eiergrosse Hagelkörner und Blitze haben am Wochenende Teile der Schweiz verwüstet. Die Hagelversicherung rechnete am Montag mit Schäden von mindestens fünf Millionen Franken. [] Die Hagelgewitter mit nuss- bis eiergrossen Körnern konzentrierten sich diesmal auf den Samstag, wobei zum Einen die Region Oberaargau, oberes Wiggertal und Suhrental und das Amt Willisau betroffen waren. []	
1995, 25.12.	Dauerregen	Reiden, Langnau bei Reiden: Überschwemmungen.	WSL (2018)
		Statt Schnee kam Regen: Bei der regionalen Alarmstelle (Stadtpolizei Zofingen) musste als erste Organisation in der Nacht von Heiligabend auf Weihnachten um 2:10 Uhr das Zofinger Stadtbauamt aufgeboten werden, weil der Riedtalbach seinen gewohnten Lauf verlassen hatte, wie Fw Peter Straumann dem «ZT» mitteilte. In der Folge gingen pausenlos Notrufe ein; insgesamt waren es schliesslich deren 75. Aufgeboten werden mussten (in alphabetischer Reihenfolge) die Feuerwehren von Altishofen, Brittnau, Langnau, Murgenthal, Nebikon, Oftringen, Reiden, Rothrist, Schötz, Strengelbach, uffikon, Vordemwald, Wikon, Williberg und Zofingen. Die Alarme btrafen über die Ufer getretene Bäche, überflutete Strassen, sowie angefüllte Keller. Zu dramatischen Situationen sei es nicht gekommen, was auch von Fw werner Bugmann von der Kantonspolizei Zofingen bestätigt wurde. [] Das Schwergewicht der Einsätze lag vor allem in Nebikon. Hier war die Luthern massiv angestiegen. []	blatt, 27.12.1995
1999, 19.2.	Dauerregen		Ereigniskataster
1999, 13.7.	Gewitter	Hochwasser Huebbach, Hinterer Bereich bei Hueb	Ereigniskataster

Datum	Niederschlag	Angaben zum Ereignis	Quelle
2007,	Gewitter	Die Kaltfront, die die Schweiz am Donnerstagmorgen von Westen her durchquert hat, war von Blitz und Donner, sehr viel Regen, Sturmböen	WSL (2018)
21.6.		und teilweise auch von Hagelschlag (Kt. FR und Mittelland) begleitet gewesen. In Bern wurden innerhalb von einer Stunde 30mm Regen ge-	- (/
		messen. Der Himmel verdunkelte sich innert Minuten, bevor heftiger Regen niederging.	
		Kurz nach 8 Uhr zog das Gewitter über den Kanton Luzern. Betroffen waren die Regionen Willisau, Sursee und das Seetal. Keller und Stras-	
		sen wurden von Bächen überflutet. Die Gebäudeversicherung des Kantons Luzern rechnete kurz nach dem Ereignis mit einer Schadenssum-	
		me von über 2 Mio. Fr., wobei mehr als die Hälfte der Meldungen Sturmschäden waren. Ausserdem gab es auch einige Hagelschäden an den	
		Gebäuden. Die meisten Schäden wurden aus den Gebieten Mauensee, Knutwil, Triengen und dem Seetal bei Aesch gemeldet.	
		In Langnau bei Reiden und Richenthal entstanden einige Schäden durch den über seine Ufer getretenen Huebbach. Im Gebiet Mehlsecken	
		entstand ein temporärer See. In der Hueb in Richenthal entstanden Schäden in einem Stall (Maschinenpark mit 23 cm Wasser).	
		Reiden, Huebbach: Schwemmholz aus Gerinne entfernen, oberhalb Kurhaus Richenthal Ausbaggerungen, v.a. private Reinigungsarbeiten,	Ereigniskataster
		keine Beschädigungen der Schutzbauten. weitere Infos unter www.fw-wiggertal.ch.	
		maximale Abflusstiefe Strasse in Langnau 20 - 30 cm, Hochwasser 1986 grösser, 2005 auch grösser.	
		Kartierung der Ausuferungen	
2007,	Dauerregen	Anhaltender Regen hat in der Schweiz Flüsse über die Ufer treten lassen, Keller geflutet und Strassen überschwemmt. Der Kanton Luzern rief	WSL (2018)
8./9.8		am Abend des 8.8.07 den Kantonalen Krisenstab zusammen. Mehr als 1500 Feuerwehrleute standen in der Nacht im ganzen Kanton im Ein-	
		satz. Am Mittag des 9.8.07 konnte der Krisenstab wieder Entwarnung geben. Die Gebäudeversicherung rechnete kurz nach dem Ereignis mit	
		600-800 Schadenfällen und einer Schadensumme von 6-8 Mio. Fr. Am stärksten betroffen waren die Gemeinde Littau und das Seetal.	
		Bei der Feuerwehr Wiggertal (Gemeinden Reiden, Langnau bei Reiden, Richenthal) gingen rund 40 Schadensmeldungen ein. Keller mussten	
		ausgepumpt werden. U.a. standen der Keller und die Garage des Restaurants Lerchenhof (Wiggermatte 2, Reiden) unter Wasser. Die Wigger	
		wurde beobachtet. V.a. entlang der Wigger drückte das Grundwasser in diverse Räumlichkeiten. Auch in der Brunnmatte wurde ein Keller	
		überschwemmt. In einem Industriegebäude (Gemeinde unklar) wurden die Kellerräume aufgrund des hohen Grundwasserdruckes gefüllt. Der	
		Huebbach trat um 20:25 Uhr über die Ufer. Die Strecke von Langnau nach Mehlsecken war zwischenzeitlich gesperrt. Dies weil man den Ver-	
		lauf der Strasse nur noch erahnen konnte. Auf der anderen Seite der Golfanlage erstreckte sich eine regelrechte Seenlandschaft. In Richen-	
		thal konnten grosse Schäden vermieden werden. An einer eingedohlten Stelle drohte der Huebbach zu überlaufen, weil die Röhre verstopft	
		war. Bis zur Entfernung von Holz und Steinen musste man das Wasser mit Sandsäcken und Brettern in die Wiese ableiten. Somit verhinder-	
		ten die Feuerwehrleute, dass sich das Wasser seinen Weg auf der Strasse durchs gesamte Dorf bahnte. Dennoch musste der Strassenab-	
2000	Counitton	schnitt Hueb in Richenthal gesperrt werden.	MCI (2040)
2009,	Gewitter	Ein eigentlich nicht allzu heftiges Gewitter baute sich im Napfgebiet auf und ging am Abend über dem Kt. Luzern nieder (Richtung Sempa-	WSL (2018)
4.7.		chersee und Luzern). Bäche traten über die Ufer, Strassen wurden überschwemmt und Keller standen unter Wasser. Am schlimmsten betrof-	
		fen war das Wiggertal. Die Feuerwehr Wiggertal stand in Ortsteilen von Richenthal, Langnau und Mehlsecken (Gemeinde Langnau bei Reiden) im Finestz. Laut Feuerwehr regnete es rund 60 l/m² Wegen den gugufernden Bächen museten die Stressen in Biehenthal und Langnau.	
		den) im Einsatz. Laut Feuerwehr regnete es rund 60 l/m². Wegen den ausufernden Bächen mussten die Strassen in Richenthal und Langnau	
		bis Mehlsecken vollumfänglich für jeglichen Verkehr gesperrt werden. Auch die Strasse zwischen Brittnau und Langnau wurde gesperrt. Nach	
		dem Unwetter gingen die Bäche jedoch schnell wieder zurück. Reiden, Richenthal und Langnau, Huebbach. [Ereignis mit Fotos dokumentiert]	Ereigniskataster
		Langnau/Richenthal, Nach heftigen Niederschlägen traten die Bäche am Samstagabend [4.7.2009] über. Innert kurzer Zeit goss der Himmel rund 60 Liter pro Quadratmeter Regen hinunter. Bäche liefen über, Keller überschwemmten. Am Grümpelturnier in Langnau ruhte der Ball,	
		doch der Himmerl rumorte. Kurz nach 18 Uhr am Samstagabend öffnete er seine Schleusen und überzog das Land mit einer Regemenge, die	(0.7.2008)
		Bäche zu gefährlichen Unwesen verwandelte. Bei Feuerwehrkommandant Thomas Kilchenmann schellte der Alarm um 18.15 Uhr, Franz Pe-	
		ter in Pfaffnau wurde etwas früher alarmiert. [] Kantonsübergreifend bannten sie die Wassermassen, die aus dem Hueb-, Renzlige-, Gugger-	
		und Elbach Häuser und Strassen überfluteten.	
		עווע בואסטודומעספו עווע סנומסספוז עשפווענפנפוז.	

Datum	Niederschlag	Angaben zum Ereignis	Quelle								
		In Richenthal hätten sämtliche Seitenbäche des Huebbaches Hochwasser geführt. Dessen Bachbett habe die Wassermassen nicht mehr fas-	Willisauer Bote								
		sen können. Die Feuerwehr pumpte in der Folge Keller aus und reinigte anschliessend Strassen, um die Sicherheit der Verkehrsteilnehmer zu	(7.7.2009)								
		gewährleisten. Kommandant Kilchenmann rühmte die Eigeninitiative von vielen Bewohnern entlang der Bäche: "Sie legten selber Hand an									
		und wehrten zum Beispiel mit Schalplatten die Fluten ab." In der Richenthaler Meiershalde habe der Hofbesitzer selber Kuh- und Schweine-									
		stall von Wassermassen und Schutt befreit - ohne die Feuerwehr zu beanspruchen.									
2009,	Gewitter	Reiden (Langnau): Huebbach, Golfplatz Mehlsecken, Richenthal, Langnau. Dorfstrasse Richenthal wurde gesperrt.	Ereigniskataster								
8.8.		Seitenerosion unterhalb Brücke der Schweinezucht Feld; Unterhalt Geschiebesammler Mehlsecken; Abweisung des Wassers bei Brücken bei	Befragungen								
		Golfplatz (1x Verklausung durch Wurzelstock); Bachsohlen verlanden zusehends; Bei Liegenschaft Hueb 2, Richenthal trat erneut Wasser in]								
		die Garage ein.									
		Graf Peter, Bachmatte 1, Richenthal, Empörte sich über das nichts Tun! Zeigte die geschädigten Stellen entlang seiner Parzelle. Wies auf die									
		in Mitleidenschaft gezogene Brücke hin. Er zeigte die Seitenerosion, welche ca. 50 Meter unterhalb der Brücke stattgefunden hatte. Die									
	Schwellen im Bach haben einen negativen Einfluss auf das Geschehen am Bachufer.										
		FW-Kdt Kilchmann Thomas, Erklärte die problematischen Punkte. Jollers Hof sei am ärgsten betroffen gewesen. Der Kritische Bereich lä									
		am Stampfi- und Ränzligebach.									
		Furlan Antonio, Hueb 2, Richenthal, Es ist bereits das zweite Mal in diesem Jahr in den Keller gelaufen. Beim ersten Mal sammelte sich ein									
		Wasserniveau von 30 cm an und nun gar 40 cm, welches eigenhändig gemessen wurde. Die Bachsohle sei in diesem Bereich markant ange-									
		stiegen. Er sprach von mehr als einem halben Meter. Dies hatte zu den Überschwemmungen geführt.									
		[Ereignis mit Fotos dokumentiert]									
		Richenthal/Langnau, Der Huebbach und seine Seitenarme traten erneut über die Ufer und richteten grosse Schäden an. [] Sintflutartige Re-									
		genfälle liessen den kleinen Ränzligenbach in Richenthal am Montagabend [10.8.2009] zum tosenden Fluss werden. Innerhalb von wenigen									
		Minuten regnete es über 80 Liter pro Quadratmeter. Gegen 20.30 Uhr konnte das Bachbett die braunen Wassermassen nicht mehr aufneh-									
		men. Mit gravierenden Folgen. Der Hofplatz von Rita und Franz Joller in der Meiershalde versank knietief, die Mastschweine im Stall standen									
		beinahe bis zum Bauch im Wasser. Die Feuerwehr verhinderte Schlimmeres, probierte zusammen mit Bauer Franz Joller die Flut vom Stall									
		fernzuhalten. Mit Tränen in den Augen schaute Rita Joller dem Treiben zu. Sie sah wie die Wassermassen ihren Garten zerstörten, Blumen									
		und Gemüse den Bach runtergingen, den Pflanzplätz hatte sie vor kurzem wieder in Ordnung gebracht, nachdem dieser bereits am 4. Juli									
		vom Hochwasser zerstört wurde. []"Der Hof von Franz und Rita Joller war vom Unwetter am stärksten betroffen", sagt Feuerwehrkomman-									
		dant Thomas Kilchenmann. Bis um 23.30 Uhr standen am Montag 30 Männer der Feuerwehr Wiggertal auf dem Gemeindegebiet Richenthal									
		und Langnau im Einsatz Ränzligen-,Stampfi- und Elbach führten Hochwasser. Die Nebenarme ilessen den Huebbach in die Höhe schnellen									
		und an mehreren Orten über die Ufer treten. Zeitweise glich das Gebiet zwischen dem Richenthaler Kur- und Schulhaus einer Seenland-									
		schaft, wurde die Dorf- zu einer Wasserstrasse und musste gesperrt werden. Im Gebiet Hueb pumpten die Feuerwehrmänner vier vollgelaufe-									
		ne Einfamilienhauskeller leer. Grosse Spuren hinterliessen die Wassermassen auch bei der Richenthaler Sägerei. Hier lief unter anderem der									
	_	Sägemehlkeller voll. [zahlreiche Fotos ergänzen den Bericht]									
2010,	Dauerregen	Starke, andauernde Regenfälle führten im Kt. Luzern zu überschwemmten Strassen und Feldern. Rund 20 Feuerwehren standen im Einsatz.									
29.7.		Bis am Abend des 29.7.2010 gingen bei der Gebäudeversicherung rund 50 Schadensmeldungen ein. Die Polizei verzeichnete etwa 200 Anru-									
		fe. Besonders betroffen war das Luzerner Hinterland, das Rottal, das Wiggertal und das Seetal. In Mehlsecken gab es (drei?) überschwemm-									
		te Keller. Die innert kürzester Zeit stark ansteigende Wigger hat die Liegenschaften in Mitleidenschaft gezogen. Weitere überschwemmte Kel-									
		ler gab es in Langnau, wo es Rückstau durch die Kanalisation gab. In Richenthal vermochten der Stampfi- und der Huebbach die grossen									
		Wassermassen nicht mehr aufzunehmen, so dass diese bei den Liegenschaften Stutz und Sagi über die Ufer flossen. Der Huebbach brachte									
		ausserdem Geröll auf die Strasse, das weggeräumt werden musste.									

Datum	Niederschlag	Angaben zum Ereignis	Quelle
2014, 28.7.	Gewitter	Über dem Kanton Luzern entluden sich am Nachmittag heftige Unwetter. Die Gebäudeversicherung registrierte rund 250 Schadenmeldungen. Die Gebäudeschäden wurden auf über 1 Mio. CHF geschätzt. Insgesamt waren im Kanton Luzern 22 Feuerwehren im Einsatz. Betroffen waren vor allem das Entlebuch und Gebiete im Luzerner Hinterland. Nachdem ein heftiges Gewitter im Luzerner Hinterland (Zell – Luthern) niederging, floss um 19.45 Uhr eine Unmenge an Wasser, Schlamm, Holz und Geröll die Wigger hinunter. Innert kürzester Zeit stieg der Pegel derselben um einige Meter an. Dadurch drückte im Raum Mehlsecken das Wasser durch die Regenwasserleitung zurück in den Keller eines Einfamilienhauses. Bevor die Bewohner den starken Zufluss bemerkten und abdichten konnten stand das Untergeschoss bereits rund 40 cm unter Wasser. Die alarmierten Feuerwehrleute pumpten das Wasser heraus und befreiten mit tatkräftiger Unterstützung der Bewohnerinnen die einzelnen Keller im Groben vom Schlamm. Weiter wurden Kontrollgänge entlang der Wigger durchgeführt sowie in Mehlsecken eine zusätzliche vorsorgliche Wassersperre erstellt.	
2015, 1 3.5.	Dauerregen	Dauerregen (kombiniert mit Schneeschmelze) vom 13. sorgte in mehreren Kantonen für Überschwemmungen. Vom 2. bis 4. waren rund 18 Feuerwehren im Kanton LU im Einsatz. Es traten vor allem Bäche über die Ufer, und es gab überschwemmte Strassen. Reiden: Es kam zu einem Erdrutsch. Die andauernd starken Regenfälle bedingten am Abend des 1. Mai den Einsatz von 50 Angehörigen der Feuerwehr Wiggertal. In allen drei Ortsteilen (Annahme Reiden, Langnau, Richenthal (separat aufgenommen) war die Feuerwehr Wiggertal wegen Auspumpen von Kellerräumen und der Errichtung von Vorsorgemassnahmen für die drohende Überschwemmung des Hubbachs im Einsatz. Die andauernd starken Regenfälle bedingte den Einsatz von 50 AdF der Feuerwehr Wiggertal. Der Auftakt des Einsatzes war der Erdrutsch	Feuerwehr Wig-
		zwischen Langnau – Richenthal. Die Strasse Langnau – Richenthal wurde gesperrt, und es wurde eine grossräumige Umleitung eingerichtet. Während des Einsatzes stieg der Huebbach permanent an. Der Einsatzleiter Heinz Achermann vergrössert das Aufgebot sofort. Es wurde nach dem Notfallkonzept Hochwasser an verschiedenen Orten mit Sandsäcken und Holzladen Liegenschaften geschützt. Die Schäden hielten sich in Grenzen bei den Keller die mit Wasser gefüllt wurden. Der Mai war in der Schweiz verbreitet zu mild und zu nass. Während einer sechstägigen Regenperiode vom Abend des 30. April bis zum Mor-	
		gen des 6. Mai fielen im Mittel über die ganze Schweiz rund 100 mm Regen. Die grossen Niederschlagsmengen führten vor allem in der Westhälfte der Schweiz zu Hochwassersituationen. Bäche und Flüsse traten über die Ufer und die Pegel einiger Seen stiegen stark an; einige erreichten sogar die Hochwassergrenze (Gefahrenstufe 4 – grosse Hochwassergefahr). [] Vom 2. bis 4. waren rund 18 Feuerwehren im Kanton Luzern im Einsatz. Es traten hauptsächlich Bäche über die Ufer, und es gab überschwemmte Strassen und Keller, so z. B. in Dagmersellen und Reiden.	(2016)
2016, 25.6.	Gewitter	Im Kanton Luzern wurden mehrere Strassen verschüttet. Die Polizei verzeichnete in der Nacht innerhalb von zwei Stunden 37 Unwettermeldungen. Reiden: Ein starkes Gewitter verursachte an diversen Orten überflutete Keller und Objekte. Besonders im Gebiet Bruggacher, Geissmatte und Hintermoos Moosersagi (Gde Wikon) gab es Wassereinbrüche und Schlamm in den Gebäuden. Im Gebiet Hueb wurde mit Sandsäcken ein Dijektschutz erstellt.	
		25.06.2016, Überflutungen, Samstag, Zeit: 01:10 bis 08.00 Uhr: Ein starkes Gewitter verursachte wieder an diversen Orten überflutete Keller und Objekte. Besonders im Gebiet Bruggacher, Geissmatte und Hintermoos Moosersagi gab es Wassereinbrüche und Schlamm in den Gebäuden. Im Gebiet Hueb wurde mit Sandsäcken ein Objektschutz erstellt.	gertal (2018)
2016, 12.7.	Gewitter	Reiden: Starke Regenfälle in der Nacht auf den 12. Von 3 bis 14 Uhr war die Feuerwehr an rund zehn Einsatzorten beschäftigt. Um 3 Uhr morgens ging der erste Alarm bei der Feuerwehr Wiggertal ein. Der über die Ufer getretene Moosbach [Dorfbach gemeint] flutete im Gebiet Sonnenhof, Reiden, eine sich im Rohbau befindende Baustelle sowie im Reidermoos eine Schweinescheune. Ein Erdrutsch zwischen Reiderund Hintermoos sowie eindringendes Wasser in einen Keller im Gebiet Hueb in Richenthal hielten die Feuerwehr den ganzen Tag auf Trab. Hinzu kamen überflutete Strassen sowie kleinere Wassermassen in verschiedenen Kellern im ganzen Gebiet der Feuerwehr Wiggertal. Insgesamt standen zwölf Feuerwehrmänner im Einsatz. Die Wassermassen des Huebbachs haben im Lupfen 3 in Langnau bei Reiden eine Bachmauer und das angrenzende Land unterspült, was einen Baum zu Fall brachte. Als Sofortmassnahme wurde die Mauer mit 18 Kubik Beton gesichert. Ansonsten wäre das benachbarte Einfamilienhaus unterspült worden. Ebenfalls betroffen von den grossen Regenmassen war das Gebiet rund um die Badi Reiden. Der Sportplatz stand teilweise unter Wasser. Zu grösseren Schäden kam es aber nicht.	

Datum	Niederschlag	Angaben zum Ereignis	Quelle
		12.07.2016, Dauereinsatz wegen Starkregen, Dienstag, Zeit: 03:09 Uhr – 15:00 Uhr: Ein weiteres Mal verursachte der starke Regen die FW Wiggertal. Im Gebiet Reidermoos ging der Bach über die Ufer. Eine Schweinescheune stand unter Wasser, und die Gefahr bestand, das dass Güllenloch überlief. Weitere Überschwemmungen im Gebiet Hueb Richenthal, Mehlsecken sowie im Gebiet Badi Reiden. Kleine Mengen Wasser in verschiedenen Keller, was viele kleine Einsätze gab. Um 08.00 ging die Meldung ein, das im Gebiet Lupfen 3 die Bachmauer unterspült ist. Mit dem Gemeinderat und einem Baggerunternehmen wurde die Schadhafte Stelle begutachtet. Es wurde als Sofortmassnahme die Bachmauer mit Schaltafeln und Plastik und 18m³ Beton die Unterspülte Bachmauer zu stabilisiert. Dank dieser Massnahme konnte das angrenzende Haus geschützt werden.	gertal (2018)
2017, 8.7.	Gewitter	Intensive Niederschläge haben am 8. Juli 2017 in der Region Zofingen-Uerketal massive Überschwemmungen verursacht. Vom Ereignis stark betroffen waren auch die beiden Gemeinden Bottenwil und Uerkheim.	, ,
		Heftige Hagel- und Regenfälle. Reiden: Es gab Hochwasserschäden.	WSL (2018)

Nr.	1480	1570	1580	1590	1600	1610	1620	1630	1640	1650	1660	1670	1690	1830	1850
Station	WITTNAU 640490	OLTINGEN 637250	KILCHBERG BL 634680	BOECKTEN 629790	EPTINGEN 628770	627530	BENNWIL 625800	WALDWEIDE 621270	WALDENBURG 623360		REIGOLDSWIL 619140	LIESTAL 621000	RUENENBERG 633250		GRELLINGEN 612150
Y Höhe	258950 404	254640 590	253020 585	256960	248420	257100 380	250430 520	247340 1020	248150 552	252610	249500 526	260000 320	253840	253630	254560 330
1910-01-15			2.9				2		2.3		4.2	2		2.7	2.3
1910-01-16 1910-01-17	9.1		0 4.7	0 4	0 6.1		0 5.2		0 5.5		0 3.7	0.6 4.6		0 2.7	0 1.4
1910-01-18 1910-01-19	74		16.7 59.4	13.8 53.6	60.4		20.7 63.5		45.6 70.8	59	27.8 74.8	9.3 68.5		13.1 60.2	15.5 49.5
1910-01-20 1910-01-21	1.3		31.5 1.5	2	2.1		33.4 1.5		35.3 1.6	1.5	1.2	34.2 1		31.7 3.2	35.5 3.5
1920.1.1910 1620.1.1910	133.4		90.9 112.3	86.8 104.6			96.9 122.8		106.1 157.2	91.5 112.0	111.6 143.1	102.7 117.2		91.9 107.7	85.0 101.9
1931-06-18 1931-06-19															
1931-06-20 1931-06-21															
1931-06-22 1931-06-23															
1931-06-24 1931-06-25															
1931-06-26 2324.6.1931															
2125.6.1931 1931-08-18															
1931-08-19 1931-08-20															
1931-08-21 1931-08-22															
1931-08-23 1931-08-24															
1931-08-25 1931-08-26															
2223.8.1931 2024.8.1931					24.6		40.0		14.2	42.4		10.7	V		
1932-07-13 1932-07-14					21.6		18.2		14.2 0.1	0.2		12.7 0.1			
1932-07-15 1932-07-16 1932-07-17					22.2 7.6 6.8		26.8 3 5.5		30 2.5 6.3	17.4		15.6 0.4 5.9			
1932-07-17 1932-07-18 1932-07-19					0.0		0		0.5	0		0.9			
1932-07-19 1932-07-20 1932-07-21					2.3		1.6 0		1.1 0	0.5		0 0.1			
1932-07-21 1932-07-22 1932-07-23					4.3 6.7		15 9.1		3.8 13	3.6		2.6 13.6			
1920.7.1932 1620.7.1932					2.3 16.7		1.6 10.1		1.1 9.9	0.5		0.0 6.3			
1972-11-18 1972-11-19	0.1	0 7.3	0 4.8	0.2 4	0.9	0 5.3	0.6 12.1	0 6.3	0 7.5	0	0.1 4.2	0.0		0 4.2	0 4.6
1972-11-20 1972-11-21	2.2	2.5 14.8	6.1	3.2 13.3	10.3	2.5	10.1 12.2	7 14.2	7.1	5.6	6.1			2 12.5	3.5 9.4
1972-11-22 1972-11-23	39.4	44.7 0.9	45.8	42.4	42.9	39.7 0.5	43.3 0.6	46 0	47.3 0	42 0	51 0.5			43.6 0.5	37.1 0.2
1972-11-24 1972-11-25		2.8 0	2.8 0.1	1.7 0.1	1.9 1.1	2.5	1.9 0.1	3 0	3.4 0	0.2	0.3			3.1 0	1.6 0
2122.11.1972 1822.11.1972	65.4	59.5 69.3	58.5 69.4	55.7 63.1	55.7 76.9	50.7 58.5	55.5 78.3	60.2 73.5	62.6 77.2		77.3			56.1 62.3	46.5 54.6
1975-08-20 1975-08-21					0	0 29.5	0 12.3	0 29.2			0 14.2	0 24.5		0 36.8	
1975-08-22 1975-08-23					31.2 28.2	25.6 18.8	21.8 20.1	30.2 24.4	21.8 24.7	24	23.1 21.3	20.4 19.3		32.9 19.8	
1975-08-24 1975-08-25					4.4 4.2	4.2 1.5	4.1 2.4	4.4 3.1	3.7 2.7	3.4 2.4	3 2.6	5.3		1.3 3.3	
1975-08-26 1975-08-27					2.2	0.2	1.2	4.6 0	2.5	0	1.2	0		0.2	
1975-08-28 1975-08-29 1975-08-30					22.3	0 16.7 46	0 22.7 9.8	0 20	0 23.9 6.5	20.7	0 24.2 9.6	0 12.4 38		0 23.6 26.2	
1975-08-31 1975-08-31 2930.8.1975					4.9 0 27.2	0 62.7	9.6 0 32.5	8.4 0 28.4	0 30.4	0	0	0.2 50.4		0 49.8	
2125.8.1975 2731.8.1975					68.0 27.2	79.6 62.7	60.7 32.5	91.3 28.4	57.5 30.4	77.3 35.6	64.2 33.8	70.5 50.6		94.1 49.8	
1979-11-01 1979-11-02					Y	02	02.0	20.1	00.1	00.0	00.0	00.0		10.0	
1979-11-03 1979-11-04															
1979-11-05 1979-11-06															
1979-11-07 1979-11-08															
1979-11-09 1979-11-10															
67.11.1979 37.11.1979															
1981-12-10 1981-12-11															
1981-12-12 1981-12-13															
1981-12-14 1981-12-15															
1981-12-16 1981-12-17															
1981-12-18 1516.12.1981 1216.12.1981															
1986-06-01 1986-06-02	15.2 32.7	10 34.2		9.8 26.8		8.6 26.9	4 21	16 16.6	9.2 15.4	7.3 14	12 16.5	11.2 18.9			6.5 12.4
1986-06-03 1986-06-04	9.7	8.4 13.8	7.6	6.7 13.8	8.9	7.8 14.7	7.4 20.4	15.2 15.3		9.5	16.2 19.8	6.9 18.3	7.4		7.3 14.3
1986-06-05 1986-06-06	0	1.6		1.6		0.7	0.5 1.3	3.7 0.4	1.4		4.8 0.6	1.9 0.8	1		1 0
1986-06-07 1986-06-08	11.3	9.6 0	11.9 0	16 0	12.2 0	18.6 0	9.2 0	17.6 0	17.4 0	0	8.5 0	19.1 0	13 0		3.9
1986-06-09 1986-06-10	10.5	0 11.6		0 6.8		0 5	0 4.4	0 12.5	0 12.2	0 9.8		0 4.7			0 9.8
1986-06-11 1986-06-12		20.4 0.9	2.6		2.4	23.6 0.8	23.3 2.3	24.1 3.6		2	3.2	17.9 0.4	1.4		20.5 1.3
1986-06-13 1986-06-14	- 0	0	0	0	0.2	0	0	0.1	0	0	0	0	0		0
1986-06-15 1986-06-16	9.9	0 6.7		0 7.9		7.5	0 7.7	0 9.7	0 13.2			0 6.5			0 3.4
1986-06-17 1986-06-18	0	0.2	0	5.3 0	1.3	10.6	0	0	0		12.5 0	1.7 0	0		1.5 0 5.5
1986-06-19 1986-06-20	12.5	0 5.1	0 3.5			1.8	4.3 1.2	30.2 5.8	4.5	1.2		3.9 0.6	2.9		7
1986-06-21 1617.6.1986 1920.6.1986	10.8	0 6.9 5.1				0 18.1	0 7.7 5.5	0 9.7 36.0	13.2	18.5		0 8.2 4.5	7.2		0 4.9 12.5
1920.6.1986 120.6.1986		5.1 122.5			2.4 108.1	1.8 126.6	5.5 107.0	36.0 170.8				4.5 112.8			12.5 94.4

Nr.	1860	1870	1890	4445	4590	4600	4650	4680		4963	6475	6500	6510	6520	6530	6580	6590
Station				STANS					BREMGARTEN (A					AFFOLTERN I.E.			HERZOGENBUCHSEE
X Y Höhe	611420 256050 385	612075 257200 315	616530 258320 676		665520 209860 456	661910 203410 2106	647690 204780 725	659920 205170 1006		380 380	638130 205970 1408	630590 207010 894	210820	622410 212760 802	212650	219650	227350
1910-01-15		313	676	440			4.8	1.9		1.4	1406	694		4	4.6		467
1910-01-16	6 0				4.7	4.8	0 2.5	0		0			4.1 0 5	0	0		0
1910-01-17 1910-01-18	8 14				1.5 10.4	3.6 20.2	45.8	1.3		4.4 26.5			20.8	5.4 17.4	6.3 27.2		11.2 32.5
1910-01-19 1910-01-20	31.3				51.6 49	62.5 20	50 52	63.4 76.3		58.5 38.6			38.8 60	44 50.6			58.5 63
1910-01-2 ² 1920.1.1910	106.8				8.6 100.6	19.3 82.5	4.8 102.0	15.5 139.7		97.1			3.5 98.8	1.6 94.6	98.2		1 121.5
1620.1.1910 1931-06-18	8				112.5 5.5	106.3	150.3	161.0 9.5		128.0			124.6	117.4 4.2	131.7		165.2
1931-06-19 1931-06-20	0				1.7 24		0.3 15	1.8 42.4						0 6.7			
1931-06-2 ² 1931-06-2 ²					2.6		1.8 0	2.2 0						3.3 0			
1931-06-24 1931-06-24					6.5 44.7		8.4 37.6	4.3 57.6						11.7 53.5			
1931-06-25 1931-06-26	5				6.9		20 0	29 0						3.2 0			
2324.6.193° 2125.6.193°	1				51.2 60.7		46 67.8	61.9 93.1						65.2 71.7			
1931-08-18 1931-08-19	8				0 10.8		0.2	0.3 12.3						3 12.8			
1931-08-20 1931-08-2	0				15.5 1.3		18.2	20.6						9.5 4.5			
1931-08-22 1931-08-23	2				8.4 16.5		10 6.6	7.4 11.6						8.1 12.8			
1931-08-24	4				6.5		8 7.7	10						14			
1931-08-28 1931-08-26 2223.8.193	6				2.7		7.7 0 16.6	10.8 2.2 19.0						0 20.9			
2024.8.193	1				24.9 48.2		44.8	53.4						48.9			
1932-07-13 1932-07-14	4				3.5 2.5		1.8 17.5	1.8 15.4						9.2 1.4			
1932-07-15 1932-07-16	6				3.2		11.5 5.5	18.2 14.9						16 0.7			
1932-07-17 1932-07-18	8				0.7		8.4 0.7	10.1 6.3						1.2 0.4			
1932-07-19 1932-07-20	0				2.6 8.2		5.8 16	10.6 15.6						5.1 8.6			
1932-07-27 1932-07-22	2				13 12.8		4.9 12.8	16.2 7.6						4.2 0.8			
1932-07-23 1920.7.1932	2				11.5		6.5 21.8	4.2 26.2						10.9 13.7			
1620.7.1932 1972-11-18	8 0	0	0		34.7 4.1		36.4 0	57.5 3				0	0	16.0 0	0	1	0
1972-11-19 1972-11-20	0 3.4	7.3 3.5	7.5 3.7		0 6.7		2.6 9.1	0 16.3				3.4 8.9		4 7.1	5.7 9.9	10.6	13.3
1972-11-2 ² 1972-11-2 ²		13.7 37.7	10.7 41		35.9 81.6		31.8 69.8	51.3 84.7				36.2 78.7		25.3 77.9			62.1
1972-11-23 1972-11-24		0.3 1.7	0 2.5		11.1 2.4		5.7 7.1	9.8 9.6				7 10.2	4.1 4.5	2.1 5.7	2.4 1.9		
1972-11-25 2122.11.1972		0.1 51.4	0.3 51.7		0.3 117.5		1.7 101.6	0 136.0				0.4 114.9	0 94.9	0 103.2	0 91.4	0 84.8	0 78.4
1822.11.1972 1975-08-20		62.2	62.9 0		128.3		113.3 0	155.3 0				127.2	100.8	114.3 0	107.0	101.6	95.7
1975-08-22 1975-08-22			12.7 16.2		8.3 24.1		12.4 39.1	7.5 31.7						5.3 18.5			
1975-08-23 1975-08-24			11.3 0.8		65.7 15.4		35.3 10.9	66.6 6.8						23 5.3			
1975-08-25 1975-08-26			3.7 0.1		0.3		1.7 0.3	2.9 0.5						3.8 1			
1975-08-27 1975-08-28	7		0		0		0	0						0			
1975-08-29 1975-08-30	9		20 5		60 0.7		55.7 0	78.9 3.2						60.4 0.4			
1975-08-3 ² 2930.8.197			0 25.0		9.6 60.7		29.7 55.7	4.3 82.1						0.2 60.8			
2125.8.1975 2731.8.1975	5		44.7 25.0		113.8 70.3		99.4 85.4	115.5 86.4						55.9 61.0			
1979-11-02 1979-11-02	1		2.3	0 2.2	0 4.5		0	0 2.7			0 1.1			0.2			
1979-11-03 1979-11-04	3			0	0 3.2		0 9.8	0 3.6			0 5.4			0 7.8			
1979-11-05 1979-11-06	5			11.2 16.6	20.7		17.5 64.9	28.4 44.6			8.7 52.9			13.4 18.7			
1979-11-08 1979-11-08	7			25.9 3.6	19.1		34.8 12.1	33.9 7.1			42.6 6.1			26.8 8.8			
1979-11-09 1979-11-10	9			22.2 9.2	19.8 10.8		30.6 7.1	32.1 18.8			20.5			19 8.5			
67.11.1979 37.11.1979	9			42.5 57.0	26.8 50.7		99.7 127.0	78.5 110.5			95.5 109.6			45.5 66.7			
1981-12-10 1981-12-1	0			5.2 13.3	4.9 8.3	15.3 26.7	6.5 21	10.9 17.8			9.9 13.8			4.5 9.2			
1981-12-12 1981-12-13	2			4.5 8.1	7.4 8.5	24.7 20	8.9 10.1	17.2 14.1			8.8 12			6.1 14.5			
1981-12-14 1981-12-15	4			6.4 15.6	6.8 11.8	25.1 26.9	14.9 20.4	16.6 18.5			14.6 19.8			16.7 27.1			
1981-12-16 1981-12-16	6			37.4 0.1	24 0.1	59.7 11.1	34.2 0.2	46.3 0.1			32.8 4			17.8			
1981-12-18 1516.12.198	8			6.2 53.0	6.8 35.8	16.2 86.6	12.1 54.6	18.1 64.8			9.6 52.6			16 44.9			
1216.12.198° 1986-06-0°	1	5.8	8	72.0 0.2	58.5 1.9	156.4 1.5	88.5 1.2	112.7 2.1			88.0 1.4			82.2 2.8			4.3
1986-06-02 1986-06-03	2 10.4	10.4 7.2	17.8 12.7	31.3 1.5	28.4	24.5 2.8	29 12.2	52.7 7			28 8.1			27.4 10			30.5 13.4
1986-06-04 1986-06-05	4 11.3	10.6 1.1	10.9	21.1	30 8.5	39.8 8.8	27.5 6.1	53.1 10			21.4 5.6			21.8 7.5			20.5 18.1
1986-06-06 1986-06-07	6 0	0.4 5.2	0.3	0.4 0.3	0.1 0.2	3.2 3.3	1.1 0.3	2.3 1.6			2.2			1.5 3			0.7 5
1986-06-08 1986-06-08	8 0	0	0	0	0	0	0	0			0			0			0
1986-06-10 1986-06-10	0 8	7 19	10.6 22	7.3 28.7	2.9 24.3	2.3 30.6	6.3 22.3	0.5 35.4			8.7 19.1			8.3 18.5			9.3 26
1986-06-12 1986-06-13	2 4.2	0.5	1	8.2	6.9	14.9 0.4	6.9 0.7	15.7 0			6.5 0.7			2.2			1.2 0
1986-06-14 1986-06-15	4 0	0	0	0	0	0	0.7	0			0.7			0			0
1986-06-16 1986-06-16	6 3.2	3.9 1.5	8.4 1	0 5.2	0.8 22.2	1.5 6.5	0.8 18.8	13.7 10.2			18.3 3.2			1.6 3.4			12.2 0.5
1986-06-18 1986-06-18 1986-06-19	8 0	1.5 0 8	10.2	0 0.1	0	0.5 0 0.2	33.9 0	0.2 0.1			3.2 11.4			3.4 3.9			0.5
1986-06-20	0 3.2	1.5	17.4	19.1	3.7	21.7	21.5	44.3			17.8			2			3
1986-06-2° 1617.6.1986 1920.6.1986	6 4.2	5.4 0.5	9.4 27.6	5.2	23.0	8.0 21.0	0 19.6 21.5	0 23.9			21.5			0 5.0 2.0			0 12.7 3.0
1920.6.1986		9.5 82.1	27.6 123.5	19.2 125.4	3.7 133.0	21.9 162.0	21.5 188.6	44.4 248.9			17.8 153.5			2.0 113.9			3.0 144.7

Nr.	6593	6598	6600	6602		6610	6630	6634	6648	6651	6670	6675	6690	6710		6747	
Station x Y Höhe	WYNAU 626400 233860 422	ERISWIL 631175 214640 730	HUTTWIL 630250 218250 630	MADISWIL 627200 223350 540	633880 222350	630400 231080	JTHERN 636390 212130 762	AHORN 632310 210850 1015	644250 226050	EGOLZWIL Z 642913 225540 521	OFINGEN OF 637280 238320 425	FTRINGEN 638550 239370 414	HERBETSWIL 611570 238350 524	LANGENBRUCK 624630 244230 740	619250 240860	632660 243520	OLTEN 634530 243750 413
1910-01-15 1910-01-16						5 0.2	6.5				5.6		10.4		3.4		3.4
1910-01-17 1910-01-18 1910-01-19						8.2 43.1 49.2	5.5 48 67.4				7.5 41.3 49.2		14 31.2 90		9.5 38 45.2		8.6 52.8 79.8
1910-01-20 1910-01-21						45.2 1.4	52.1 2.2				42.7 1.3		34 0		36.7 0.3		34.1 1.5
1920.1.1910 1620.1.1910 1931-06-18						94.4 145.9	119.5 173.0 5.6				91.9 140.7		124.0 169.2 3		81.9 129.4 0.7		113.9 175.3 0
1931-06-19 1931-06-20 1931-06-21							0 11.9 4.2				0 7.7 1.9		0 3.4 0		0 5 0		0 6 0.8
1931-06-22 1931-06-23 1931-06-24							0 13.3 41.4				0 1.5 27.2		0 0 14.3		0 0 19.1		0 0.8 38.3
1931-06-25 1931-06-26 2324.6.1931							4.6 0 54.7				5.1 0 28.7		3.1 0 14.3		2 0 19.1		3.5 0 39.1
2125.6.1931 1931-08-18 1931-08-19							63.5 2.9 17.9				35.7 2.2 7.8		17.4 3 6		21.1 2.6 4.9		43.4 2.9 7.5
1931-08-20 1931-08-21 1931-08-22							8.6 4.9 8.6				8.9 7.3 6.3		10.8 5.9 11		9 2.1 10		7.7 3.5 8.8
1931-08-23 1931-08-24 1931-08-25							9.8 10.2 5.7				31.3 6.1 6.4		22.4 3.8 16.1		20.8 3.4 13.8		23.3 6 12
1931-08-26 2223.8.1931							0 18.4				0 37.6		0 33.4		0 30.8		0 32.1
2024.8.1931 1932-07-13 1932-07-14							42.1 3.3 0				59.9 8 0		53.9 21.2 0.3	9.5 0	0		49.3 6.4 0
1932-07-15 1932-07-16 1932-07-17							16.1 12.2 8.1				11.8 2 4.4		29 1.4 5.2	29.3 0.5 5.5	34.3 0.5 1.5		36.5 0 3
1932-07-18 1932-07-19 1932-07-20							0 36.7 19.8				0 0 4.6		0 0 0.2	0 0 0.8	0 0 0		0 0 3.2
1932-07-21 1932-07-22 1932-07-23							10.7 0 6				0 3.4 5.7		0 3.7 8.1	0 0.2 19.4	0 0 18.4		1.5 1.3 13.8
1920.7.1932 1620.7.1932 1972-11-18		0	0	0		0	56.5 76.8 0.1	1.2			4.6 11.0 0		0.2 6.8 0				3.2 6.2 0.5
1972-11-19 1972-11-20 1972-11-21		6.4 10.1 42.9	4.6 10.6 34.2	4.5 13.7 27		6.2 11.8 22.7	4.2 11.4 42	4.2 10.8 54.5			5 13 22.1		14.2 13.7 17.2		10.3 12.3 8.3		4.4 8.2 10.6
1972-11-22 1972-11-23 1972-11-24		74.7 1.3	87.4 2.5 4.2	78.2 3.1		72.4 0.5	50 5.2 3.7	96.9 4.7			58.4 0 2.6		52.4 1 0.8	39.2 0.5	38.5 0.2		40.8 6.6
1972-11-25 2122.11.1972		8.7 0 117.6	0.5 121.6	2.3 0.1 105.2		1.9 0.1 95.1	0.2 92.0	10.3 0.9 151.4			0 80.5		0 69.6	0.2 49.2	0.2 46.8		1.4 0 51.4
1822.11.1972 1975-08-20 1975-08-21		134.1	136.8	123.4		113.1	107.7 0 6.4	167.6			98.5 0 6		97.5 0 13.5	0 4.7	69.4 0 8.5		64.5 0 4.7
1975-08-22 1975-08-23 1975-08-24							15.3 25.4 5.6				19.8 18.4 9.1		19.8 14 2.7	20.8 19.7 3.7	29.4 18.9 1.5		19.2 18.6 6.1
1975-08-25 1975-08-26 1975-08-27							5.3 1.5 0				9.5 0.6 0		5.4 0.5 0	1.8 1 0	2.8 1 0		7.6 0.2 0
1975-08-28 1975-08-29 1975-08-30							0 40.4 0.1				0 20 1.9		0 29.4 1.4	0 15.8 3.2	0 13.1 0.8		0 20.8 1.5
1975-08-31 2930.8.1975 2125.8.1975							1.4 40.5 58.0				0 21.9 62.8		0 30.8 55.4	0	0		0.1 22.3 56.2
2731.8.1975 1979-11-01 1979-11-02							41.9 0 0.1				21.9 0 0		30.8 0 0	19.0	13.9 0 0.7		22.4 0.1
1979-11-03 1979-11-04 1979-11-05							0 12.3 18.1				0 6.1 15		0 5.7 16.1		0.7 0 6 17.8		0 8.3 11.1
1979-11-06 1979-11-07							53.2 31.1				42.3 18.3		27.4 28.7		37.8 21.6 5		34.5 22.6
1979-11-08 1979-11-09 1979-11-10							13 21.2 8.3				13.9 9.5 3.6		5.4 1.3 5.8		1.7 2.9		5.5 5.7 5.8
67.11.1979 37.11.1979 1981-12-10							84.3 114.7 4.6				60.6 81.7 4.2		56.1 77.9 2		59.4 83.2 1.2		57.1 76.5 2.4
1981-12-11 1981-12-12 1981-12-13							21.2 10.4 15.4				17.4 2.5 21.7		28.3 1.2 21.4		27.3 1.9 18.1		20.4 1.9 17.4
1981-12-14 1981-12-15 1981-12-16							25.3 25.8 30.2				27.1 32.5 17		25.8 12.6 17.4		22.7 16.2 16.3		27.1 24.3 14.2
1981-12-17 1981-12-18 1516.12.1981							1.6 11 56.0				4.1 7.5 49.5		6.8 6.6 30.0		9.6 8 32.5		7.6 7.7 38.5
1216.12.1981 1986-06-01 1986-06-02	4.5 19.5		2.4 90.9	2.5 29		4.3 23	107.1 2.5 30.7		4.4 19.1		100.8	5.2 31	78.4 3.9 14.2		75.2 4.6 17		84.9 4.5 21.9
1986-06-03 1986-06-04 1986-06-05	9.6 17.2 8		13.6 20.8 8.4	14 29.4 11.7		18 28.6 11.1	16.4 27 6.4		10.7 21.9 1.9			11.3 16.7 3.4	9.4 28.6 5.4	8.3 17 7.2	7.8 17		12.2 17.5 2.5
1986-06-05 1986-06-07 1986-06-08	0.4 6 0		1.5 3	11.7 1.1 4.6 0		7.4 0	0.9 2.8		0.8 1.6 0			11.6 0	5.4 6.1 5.4 0	7.2 0.5 14.8 0.1	6.7 0.1 6.5 0.1		0 10.4 0
1986-06-09 1986-06-10	0 0 7.7 17		0 8 30.6	0 4.1		0 7.7	7.8		0 5			0 10.3	0 10.8	0 12.7	0 14		0 0 2.2
1986-06-11 1986-06-12 1986-06-13	1.7 0		20.6 2 0	23.7 1.5 0.2		21.6 1.1 0	17.9 3.3 0.1		22 1.7 0			17.3 2.6 0	18.2 0.8 0	18.1 1.9 0.1	15.4 1 0.1		26.3 3.1 0
1986-06-14 1986-06-15 1986-06-16	0 0 6.9		0 0 8.8	0 0 17		0 0 28.6	0 0 19.2		0 0 12.5			0 0 4.5	0 0 11.3		0 0 13		0 0 12.1
1986-06-17 1986-06-18 1986-06-19			12.2 0.8 0	2.1 0.2 0		9.2 0 0	8.7 27.5 0		3.1 0.2 0			3.9 0.7 38.2	0.2 0 0	0.1 47	7.8 0.1 57.7		0.3 0 2.2
1986-06-20 1986-06-21 1617.6.1986	0 13.3		4.1 0 21.0	21.1 0 19.1		6.3 0 37.8	3.8 0 27.9		33 0 15.6			15.1 0 8.4	0.8 0 11.5	0 7.1	1.2 0 20.8		5.2 0 12.4
1920.6.1986 120.6.1986	8.0		4.1 197.1	21.1 162.2		6.3 167.9	3.8 175.0		33.0 137.9			53.3 171.8	0.8 115.1		58.9 172.1		7.4 120.4

Nr.	6760	6770	6780	6790	6800	6840	6860	6880	6900	6920	6925	6928	6940		
Station						BEROMUENSTER								(LU)	Sursee (LU)
X Y	641260 246130	252380	246170	248380	657010 220940	657080 228700	240080	659915 234450	242110	235920	655360 252450	256450	259350	640360 231200	
Höhe	380	770			515	640		450	445		405	360	514		
1910-01-15 1910-01-16			5.2 0			8.1 0	0			5.4 0					
1910-01-17 1910-01-18			4.4 31.9			7.6 20	37.5			4.6 23.8					
1910-01-19 1910-01-20			49.6 42.1			67.2 38				69.8 37					
1910-01-21 1920.1.1910			0.1 91.7			2.6 105.2	1.7			1.1 106.8					
1620.1.1910			128.0			132.8	152.9			135.2					
1931-06-18 1931-06-19						1.6 0									
1931-06-20 1931-06-21						14 2.2									
1931-06-22 1931-06-23						0 7.5									
1931-06-24 1931-06-25						30.9									
1931-06-26						0									
2324.6.1931 2125.6.1931						38.4 49.6									
1931-08-18 1931-08-19						0.9 7.5									
1931-08-20 1931-08-21						11.4 2.8									
1931-08-22 1931-08-23						8 40.2									
1931-08-24 1931-08-25						4.9									
1931-08-26						0									
2223.8.1931 2024.8.1931						48.2 67.3									
1932-07-13 1932-07-14						0.2 0.4									
1932-07-15 1932-07-16						12 13.8									
1932-07-17 1932-07-18						16.5									
1932-07-19						11									
1932-07-20 1932-07-21						30.7 11									
1932-07-22 1932-07-23						6.3 13									
1920.7.1932 1620.7.1932						41.7 72.0									
1972-11-18 1972-11-19		0 7			3.1 1.6	21.7 8.6		0 2.3							
1972-11-20 1972-11-21		6.1 16.5	12.7		6.4 33.6	8.4 35.5	11.1	8.5 35.5	6.8	7.8					
1972-11-22 1972-11-23		48.5 1.1	58.6		77.9 4.5	68.5 5.1	65.9	71.9 1.7	59.1	75.7					
1972-11-24		4	3.2		6.3	7	2.3	3.2	3.7	2.9					
1972-11-25 2122.11.1972		0.1 65.0	74.5		111.5	104.0		107.4		114.3					
1822.11.1972 1975-08-20		78.1	92.8		122.6	142.7 0		118.2	96.8	124.3					
1975-08-21 1975-08-22						3 15									
1975-08-23 1975-08-24						15 25.5 15 4.7									
1975-08-25 1975-08-26						4.7 1.4									
1975-08-27 1975-08-28						0									
1975-08-29						26.4 1.2									
1975-08-30 1975-08-31						0									
2930.8.1975 2125.8.1975						27.6 63.2									
2731.8.1975 1979-11-01						27.6 0									
1979-11-02 1979-11-03						0									
1979-11-04 1979-11-05						7.1 16.5									
1979-11-06 1979-11-07						33.5 11.9									
1979-11-08 1979-11-09						13 16.9									
1979-11-10						3.1									
67.11.1979 37.11.1979						45.4 69.0									
1981-12-10 1981-12-11						4.2 13.5									
1981-12-12 1981-12-13						8.5 22.3									
1981-12-14 1981-12-15						24.8 27.5									
1981-12-16 1981-12-17						18.1 5.2									
1981-12-18 1516.12.1981						9.9 45.6									
1216.12.1981 1216.06-01		14.8		8.9		101.2 4.7									
1986-06-02 1986-06-03		36.6 15.7		42.1 10.1		38.5 9	46.5								
1986-06-04		10.7		15.6		36.4	19.5								
1986-06-05 1986-06-06		1.7 0.2		0.1		2.1	0.5								
1986-06-07 1986-06-08		10.5 0		3.6 0		1.9 0	0								
1986-06-09 1986-06-10		0 9.5		0 2.2		0 2.4	2.2								
1986-06-11 1986-06-12		23.3 1.7		19.3 2.3		33 4.6	27.5								
1986-06-13		0.1		0		0	0								
1986-06-14 1986-06-15		0.1		0		0	0								
1986-06-16 1986-06-17		5.2 0		44.1 0.6		1.9 6.4	3.1								
1986-06-18 1986-06-19		0		0		12.4 0	0								
1986-06-20 1986-06-21		18.2 0		49.6 0		21.6 0	0								
1617.6.1986 1920.6.1986		5.2 18.2		44.7 49.6		8.3 21.6	12.5								
120.6.1986		148.3		198.5		176.9									

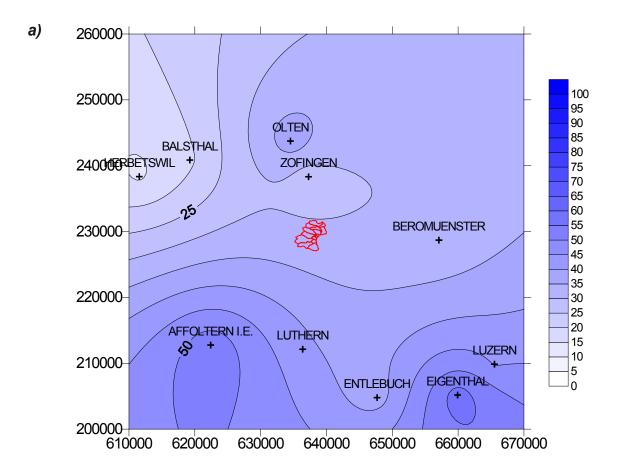
Nr.	1480	1570	1580	1590	1600	1610	1620	1630	1640	1650	1660	1670	1690	1830	1850
									WALDENBURG	LAMPENBERG				İ	GRELLINGEN
Station x	WITTNAU 640490	637250	634680	BOECKTEN 629790		627530	BENNWIL 625800	621270	623360	624180	REIGOLDSWIL 619140	LIESTAL 621000	633250	616780	612150
Y	258950	254640	253020	256960		257100	250430	247340	248150	252610	249500	260000	253840	253630 544	254560
Höhe	404	590	585	385	559	380	520	1020	552	540	526	320	610	544	330
1994-08-02 1994-08-03			0		0		0		0	0	0	0	0		0 0
1994-08-04			0		0		0	0	0	0		0	0		0
1994-08-05			0		0		0	0	0	0	0	0	0		0
1994-08-06 1994-08-07			35.7 9.7		20.4 9.1		24.5 6.5	14.2 15.1	29.8 13	11.5 4.8		0.5 3.8	18.8 8.5		3.2
1994-08-08	4.6		2.8		6.3		4.6	6.3	5.2	6	9.6	21.3	1.6		9.5
56.8.1994 1995-12-20			35.7		20.4 8.1	10.6	24.5	14.2 3.5	29.8 11	11.5	0.5 8.6	0.5	18.8 13		0.0
1995-12-21	4.8				2.7	3.9		6.5	2.3		3.1		3.4		
1995-12-22 1995-12-23					3.3 9.9	2.9 5.1		5.4 11.5	4.1 6.3		4 8.9		2.2 4.7		
1995-12-24					33.1	39.6		36.5	33		35.2		27.8		
1995-12-25					14.4	9.2		6	13.8		15.2		12.7		
2425.12.1995 2125.12.1995					47.5 63.4	48.8 60.7		42.5 65.9	46.8 59.5		50.4 66.4		40.5 50.8		
1999-02-15	5 0				0	0		0	0		0		0		
1999-02-16 1999-02-17					3.3 6.6	0 6.6		9 7.8	3.2 8.7		3.5 5.8		1.2		
1999-02-18	19.6				15.2	18.1		13.8	18.6		24.6		15.9		
1999-02-19 1999-02-20					36.4 15.3	37.1 12.9		23 15	38.5 21.6		14.5 12		55.5 23.6		
1999-02-21					15.9	32.7		16	20.8		13.2		30		
1999-02-22					7.7 51.6	4.8		5	9.2 57.1		9.1 39.1		1.9 71.4		
1819.2.1999 1721.21999					89.4	55.2 107.4		36.8 75.6	108.2		70.1		71.4 127.0		
1999-07-04					0.2	0.2		0.5 32.5	0.5		3.7 34		0		
1999-07-05 1999-07-06					30.4 38.9	32.5 17.4		26.3	35.5 44.2		35.6		13.8 16		
1999-07-07 1999-07-08	24.3				4.2	4.4		6.9	3.9		16.4		7.3		
1999-07-08					0.4	3.3 1.7		0.5 2	1.3 1.5		3.6 1.1		1.9 0.5		
1999-07-10	22.7				32.4	26.7		30	32.2		21.5		15.2		
1999-07-11 1999-07-12					7.2 4.3	7.2 8.5		7.9 7.5	32.5 4.2		8.8 6.4		8 5.1		
1999-07-13	33.4				36.5	44.7		21.5	30		21		39.6		
1999-07-14 1213.7.1999					0.8 40.8	0 53.2		2.7 29.0	1.1 34.2		0.7 27.4		2.6 44.7		
913.7.1999	69.5				81.3	88.8		68.9	100.4		58.8		68.4		
2005-08-17 2005-08-18					0 14.1	0 2.4					0 7		0 3.8		
2005-08-19	20.8				3.1	13.5					7.2		14.8		
2005-08-20 2005-08-21					20.4 28.8	2 7.8					3.7 25.5		5.1 14.9		
2005-08-22	10.2				8.5	8.4					4.3		10.7		
2005-08-23 2122.8.2005					0.9 37.3	0 16.2					0 29.8		0.5 25.6		
1822.8.2005	49.8				74.9	34.1					47.7		49.3		
2007-06-14 2007-06-15					19.7 33.4	25.1 24.3					32 26.5		24.4 25		
2007-06-16	0				1.4	0					0		3		
2007-06-17 2007-06-18					10.5	12.4 6.2					9.8 5		9.8 2.1		
2007-06-19	e o				0.2	2.9					3.9		0		
2007-06-20 2007-06-21					12.1 12.7	9.2 12.5					15.6 11.1		10.9 12.2		
2007-06-22	3.2				5.1	1.2					0		5.1		
2021.6.2007 1721.6.2007					24.8 38.5	21.7 43.2					26.7 45.4		23.1 35.0		
2007-08-04	1				0	0					0		0		
2007-08-05 2007-08-06					1.6	0					0 20		0.1 32		
2007-08-07	, I				14	8.2					17.5		25.7		
2007-08-08 2007-08-09					103.8 4.1	72 11.9					93.5 11.2		86.6 6.9		
2007-08-10					3.9	2.5					2.2		4.5		
89.8.2007 59.8.2007					107.9 123.5	83.9 100.1					104.7 142.2		93.5 151.3		
2009-06-25	5 0				0	0					0		0		
2009-06-26 2009-06-27					6.7 9.1	1.4 6.5					6.5 28		0.5 7.6		
2009-06-28	3 o				0	0					0		0		
2009-06-29 2009-06-30					3.5	0.3					0.2		4.3 0		
2009-07-01	0				0	0					0		0		
2009-07-02 2009-07-03					9.7	0 1.6					0 2		0 15.9		
2009-07-04	i o				0	0					0		0		
2009-07-05 2009-07-06					13.6	12.6 0.2					23.8 4.8		9.1 0.7		
34.7.2009	2.1				9.7	1.6					2		15.9		
1.75.7.2009 2009-08-01					23.3	14.2					25.8 0.1		25 1.6		
2009-08-02	28.3				14.7	21.1					23.9		19.8		
2009-08-03 2009-08-04					1.2	0					2.5 0		0.9 0		
2009-08-05	5 0					0							ō		
2009-08-06 2009-08-07					0 29.1	0 1.3					0		0 0.6		
2009-08-08	25.7				64.3	35.6					39		46.9		
2009-08-09 2009-08-10					1.9 3.5	0 21.7					0 13.2		0.8 11.2		
78.8.2009	25.7				93.4	36.9					39.0		47.5		
48.8.2009 2015-04-24					93.4	36.9 0					39.0 0		47.5 0		
2015-04-25	6.7				3	7.4					3.9		4		
2015-04-26 2015-04-27					0.3 18.5	0 17.1					0.3 32.3		0 17.3		
2015-04-28	1.4				1.8	1.4					3.8		1.6		
2015-04-29 2015-04-30					0 31.6	0 18					0 20.7		0 15.4		
2015-05-01	48.9				45.1	41.8					40.5		35.2		
2015-05-02 2015-05-03					22.4 8.6	15.2 8.4					12.2 12.7		14.8 9.3		
2015-05-04	1.5				1.9	1.1					1.1		1.4		
2015-05-05 12.5.2015					15.1 67.5	6.4 57.0					6.3 52.7		13.4 50.0		
30.44.5.2015	102.0				109.6	84.5					87.2		76.1		
2016-07-07 2016-07-08					0	0					0		0		
2016-07-09						0							0		
2016-07-10 2016-07-11					0 23.7	0 9.3					0 11.5		0 16.2		
2016-07-12	13				12.2	11					11.9		13		
2016-07-13 1112.7.2016					3.3 35.9	1.3 20.3					2 23.4		3.2 29.2		
812.7.2016					35.9	20.3					23.4 23.4		29.2 29.2		

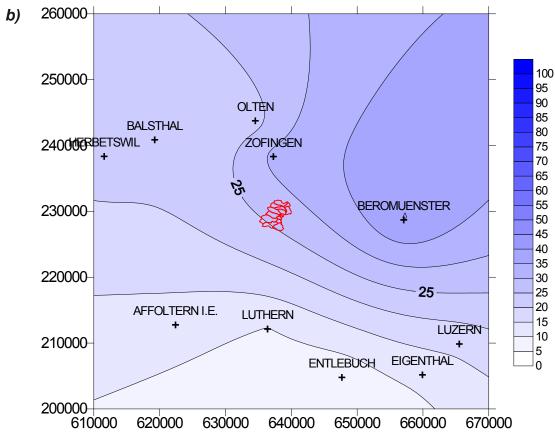
Anhang 2e: In der Umgebung des Huebbachs während grosser Hochwasser gemessene Niederschlagsmengen.

Nr.		1870	1890	4445	4590	4600	4650	4680	496		6500	6510	6520	6530		6590
Station x Y	PFEFFINGEN AESCI 611420 612 256050 257	2075	616530 258320	668750 202370	UZERN 665520 209860	PILATUS 661910 203410	ENTLEBUCH 647690 204780	659920	BREMGARTEN (AG) 66835 24480	638130	KURZENEIALP 630590 207010	627280	AFFOLTERN I.E. 622410 212760		613000	HERZOGENBUCHSEE 619970 227350
Höhe	385	315	676	440	456	2106	725	1006	38	1408	894		802	525		467
1994-08-0 1994-08-0 1994-08-0	3	0	0	0	0	0	0	0		0			0 0 0			0 0 0
1994-08-0 1994-08-0	5	0	0	8.9 6.8	4.3	0.7 0	0 0.1	0.4 6.3		0 8.2			0			0
1994-08-0 1994-08-0	8 1	17 15.5	1.5 24	24.5 6	14.6 6.4	13.5 1.2	28.7 0.6			31.4 1.2			30.6 0			10.6 1.5
56.8.199- 1995-12-2	0	0.0	0.0 8 3	15.7 17.2	4.3 19.5	0.7 55.9	0.1 17.7	23.5		8.2 15.6			0.0 15.7			6.0 11.8
1995-12-2 1995-12-2 1995-12-2	2		4.5 3.6	0.7 1.5 4.5	3.8 2.7 3.5	3.9 1.4 22.3	5.5 10.2			1.2 7.2 16.9			0.3 6.3 7.3			1.9 7.9 7.8
1995-12-2 1995-12-2	4		34.9 18.7	18.2 57.2	21.4 65.3	34.5 130.1	21.5 61.6	31.7		24.2 73.2			27.5 56			60.6 27.2
2425.12.199 2125.12.199	5		53.6 64.7	75.4 82.1	86.7 96.7	164.6 192.2	83.1 100.8			97.4 122.7			83.5 97.4			87.8 105.4
1999-02-1 1999-02-1 1999-02-1	6		0.7 2.1 13.2	0 2 1	0 0.5 0.8	0	0 3.1 10.8	0 4.6 4.9		7.5 12.1	0 3.8 14.6	2.3	0 0.9 4	0 1.1 4.9	0.6	0 1.7 6.8
1999-02-1 1999-02-1	8		2.6 4.3	23.4 23.7	9.4 7.8	0 59.7	12.2 23.1			20.6 35.3	27.4 25.3	23.4	18.1 11.2	12.3 7.7	16.3	17 18.5
1999-02-2 1999-02-2	1		33.5 4.6	17.3 14.8	7.1 10.8	44.7 83.2	23.4 26.2			33.2 38	18.9 17.6	21.2	12.2 15	10 17.4	11.2	18.4 11.6
1999-02-2 1819.2.199 1721.2199	9		2.3 6.9 58.2	9.6 47.1 80.2	10 17.2 35.9	39.1 59.7 187.6	22.4 35.3 95.7			16.4 55.9 139.2	25 52.7 103.8	50.8	11 29.3 60.5	14.7 20.0 52.3	29.0	6.6 35.5 72.3
1999-07-04 1999-07-0	4		0.5 23.1	0 7.8	0	0 2.4	0	0		0 2.2	0 3.6	0	0.8 6.5	0.7 8.4	0	0.2 14.2
1999-07-0 1999-07-0	7		20.6 23.3	13 4.5	4.9 9	9.6 5.8	5.3 13.3	5.7		4.6 10.7	3.8 30.7	0.6	2.8 9.7	3.5 7.8	13.6	5.1 8.3
1999-07-09 1999-07-09	9		1.2 0.3 21	0	0	0.1 0.2 0.4	0	0		0 0 4.9	0.2 0 3.6	0	4 0 3.9	0 0 5.5	0.8	0.5 2.5 11.4
1999-07-1 1999-07-1 1999-07-1	1		7.6 1.6	7.6 7.8	15.8 15.4	5.3 12.1	5.8 15.1	0.3 7.5 16.9		5.7 18.6	3.6 12.1 17.8	8.4	23.5 2.7	5.5 7.7 7.2	7	11.4 12 4.3
1999-07-1 1999-07-1	4		29.3 0	22.8 6.1	11.4 2.5	22.6 3.6	33.4 3	1.1		30.3 3.2	26.2 4.6	2.4	23 1.6	30.5 0.6	36 0.5	52.7 1
1213.7.1999 913.7.1999 2005-08-1	9		30.9 59.8	30.6 38.2	26.8 42.6	34.7 40.6	48.5 55.3			48.9 59.5	44.0 59.7 0	59.7	25.7 53.1	37.7 50.9	54.1	57.0 82.9
2005-08-1 2005-08-1 2005-08-1	8		0.3	3.2 27.4	1.6 23.6	7.8 16.6	52.9 24.2	7.8		5.9 21.5	8.1 7.6	8.3	9 4.5	13.2 3.1	6.4	29.6 1.4
2005-08-2 2005-08-2	0 1		1.3 26.7	32.3 135.3	24.5 81.1	47.9 67.1	46.2 131.4	102.3		36.7 126.7	30.3 123.2	170.7	18.4 61.2	2.7 46.8	3.5 27.1	5.8 23
2005-08-2 2005-08-2 2122.8.200	3		8.4 1.3 35.1	31 0 166.3	25.9 0 107.0	40.1 0 107.2	44 0 175.4	111.5 0 213.8		50.9 0 177.6	55.4 0.5 178.6	0	11.9 1.4 73.1	4.9 1.3 51.7	0.8	4 0.9 27.0
1822.8.200 2007-06-1	5		37.5 27.4	229.2	156.7	179.5 0.3	298.7 2.6	324.3		241.7	224.6 20.8	258.5	105.0 13.1	70.7 8.4	43.7	63.8 16.6
2007-06-1 2007-06-1	6		23.9 1.2	29.7 3.8	18.1 0	18 0.3	17.8 0	0		18.4 0	20.4 0	0	18 0	18.3	0	13.8 0
2007-06-1 2007-06-1 2007-06-1	8		15 14.3 3.3	14.5 0.9	15.9 12.8	14 7.1	24.2 4.2			30.4 4.3	36.5 2.1		32.3 12.2 0	31 7.6 0		25.6 2.8 0.2
2007-06-2	0		9.2 15.6	1.5 2.7	10.2 2.3	3.3 1.6	1.7 4.2	4		4.2 8.1	5.8 16.8		16.1 20.8	37.9 22.9	17.9	15.1 25.1
2007-06-2 2021.6.200	7		7.1 24.8	7.2 4.2	2.5 12.5	2.1 4.9	3.5 5.9	16.0		4.3 12.3	2.8 22.6	28.1	3.7 36.9	5.6 60.8	41.0	19.5 40.2
1721.6.200 2007-08-0 2007-08-0	4		57.4 0 0	19.6 0	41.2 0 0	26.0 0 0	34.3 0 0	0		47.0 0 0	61.2 0 0	0	81.4 0 0	99.4 0 0	0	68.8 0
2007-08-0 2007-08-0	6 7		11.5 34	35.3 75.5	0.1 50.7	33.1 51.3	1.1 64.5	21.5		12.1 37.7	48.7 24.5	10	9.7 16.3	3.1 30.3	13	17.5 7.5
2007-08-09 2007-08-09	9		90.5	65 1.7	57 4.6	54 2.2	72.9 7	2.8		72.5 13.6	91.4 19.2	80.3	65.3 16.3	61.3 20.4	13.1	69.4 8.3
2007-08-10 89.8.200 59.8.200	7		4.7 111.1 156.6	0.7 66.7 177.5	0.8 61.6 112.4	1.7 56.2 140.6	0.5 79.9 145.5	79.1		1.3 86.1 135.9	2.2 110.6 183.8	98.6	1.8 81.6 107.6	2.4 81.7 115.1		2.5 77.7 102.7
2009-06-2 2009-06-2	5		0 19.6	0 14.6	0 33.9	0 25.1	0 37.3	0 18.7		0 5.6	0 2.8	0 0.7	0 5.1	0 0.1	0 0.4	0 12.6
2009-06-2 2009-06-2 2009-06-2	8		0	0	0.1 0	2.6	3.1	1.9 0 0		13.5	7.1 0	10.3 0 0	2.5 0 0	2.6	12.1 0 0	10.5 0 0.4
2009-06-3 2009-07-0	0		0	1.5	0	0	0 29.9	0		0 11.1	0	0	0 1.8	0 0.7	0.1	0.4 0 3.9
2009-07-03 2009-07-03	2 3		0.8	0.3 1.4	0 1.3	0.6 4.2	0 19.6	0 7.6		0.2 5.2	7.2 5.6	10.4	7.7 15.5	6.4 2.6	0.3 7.6	0.3 3.3
2009-07-0 2009-07-0 2009-07-0	5		16.1	16.3	4.4 17.8	0.4 7.2 1.9	0.5 10.2 3.8	5.5		8.5 22.1	0 31.5		1.7 27.4	2.4 19.4		2.3 13.2 0.1
34.7.200 1.75.7.200	9		0.8 0 16.9	17.7 19.6	0.1 5.7 23.5	4.6 18.4	20.1 60.2	7.6		13.7 47.1	5.6 44.3		0.2 17.2 54.1	5 31.5	11.4 28.3	5.6 23
2009-08-0 2009-08-0	1		0.6 6.2	0 26	0 20.9	0 24	0 15.4	0 25.3		0 17.8	0 21.2	0.2 15.5	3.3 11.4	0.1 21.1	1 22.8	1.1 11.8
2009-08-0 2009-08-0 2009-08-0	4		3.2 0 0	31.5 0 0	24.7 0 0	24.8 0 0	26.6 0 0	42.5 0 0		21.9 0 0	19.1 0 0	13.4 0.1 0	11 0 0	6.7 0 0	2.5	5.6 0 0
2009-08-0 2009-08-0	6 7		0	0	0	0	0 1.9	0		0 1.2	0	0	0	0	0	0
2009-08-09 2009-08-09	8 9		32.9 0.3	11.3	30.6 0.8	14.6 5.8	37.2 0.2	25.1 1.5		30.8 0.7	20.8 0.6	0.5	15.5 0.2	0.3	0.9	10 0.4
2009-08-10 78.8.2009 48.8.2009	9		18.9 32.9 32.9	12.2 11.3 11.3	15.2 30.6 30.6	8.8 14.6 14.6	10.4 39.1 39.1	4.7 25.1 25.1		8.7 32.0 32.0	5.7 20.8 20.8	12.2	0.3 15.5 15.5	0.7 15.8 15.8	8.7	6.1 10.0 10.0
2015-04-2- 2015-04-2	4 5		0 6.2	0 3.3	0 5.9	0 4.9	0 3.9	0 7		0 9.3	0 7.7	0 6.4	0 5	0 4.2	0 1.3	0 0.7
2015-04-20 2015-04-20 2015-04-20	7		0 20.7	0 41.3	0 31	0 25.2	0 48.5			3.6 36.2	7.5 44.3	33.3	2.8 24.5		15.5	0.1 10.1
2015-04-2 2015-04-2 2015-04-3	9		3.6 0 17	3.5 0.9 4.5	1.8 1.1 3.8	4.1 4.1 5.3	2.6 0.8 8.3	5.5		2.1 1.7 13.3	3.8 2.8 12.9	0.8	3.3 0.2 13.1	1.6 0.1 19.5	0.1	0.3 0 23.7
2015-05-0 2015-05-0	1 2		37 16.5	38.1 17.7	38.5 15.3	25.3 10.9	47.5 16.1	40.1 17.8		69 20.8	47.2 16.9	53.3 15.1	52.1 13.1	43.8 15.5	58.8 14	77.3 16.7
2015-05-0 2015-05-0	4		7.1 0.3	44.1 1 12.9	34.1 0.5	41.7 0.7	45.9 0.8	0		36.5 1.5 30	26.9 1	3.6	22.3 2.4 28.2	16.9 4	3.6	21.7 3.8
2015-05-09 12.5.201 30.44.5.201	5		53.5 77.9	12.9 55.8 105.4	14.3 53.8 92.2	17.4 36.2 83.9	18 63.6 118.6	57.9		30 89.8 141.1	29.8 64.1 104.9	68.4	28.2 65.2 103.0	26.3 59.3 99.7	72.8	22.7 94.0 143.2
2016-07-0 2016-07-0	7		0	0	0 0	0	0			0	0		0	0		0
2016-07-0 2016-07-1 2016-07-1	0		0 0 6.9	0 0 57.3	0 0 34.9	0 0 18.6	0 0 24.6			0 0 36.9	0 0 46.1		0 0 44.4	0 0 46.6		0 0 43.9
2016-07-1 2016-07-1	2 3		8 2.7	23.1 26.8	37.9 23.4	21.9 10.4	35.8 10	35.9 18.5		34.9 11.3	36.4 13.3	32.6 12.4	23.9 12.9	26 6.8	28.4 5.7	32.3 6
1112.7.201 812.7.201			14.9 14.9	80.4 80.4	72.8 72.8	40.5 40.5	60.4 60.4	84.4		71.8 71.8	82.5 82.5	69.8	68.3 68.3		77.6	76.2 76.2

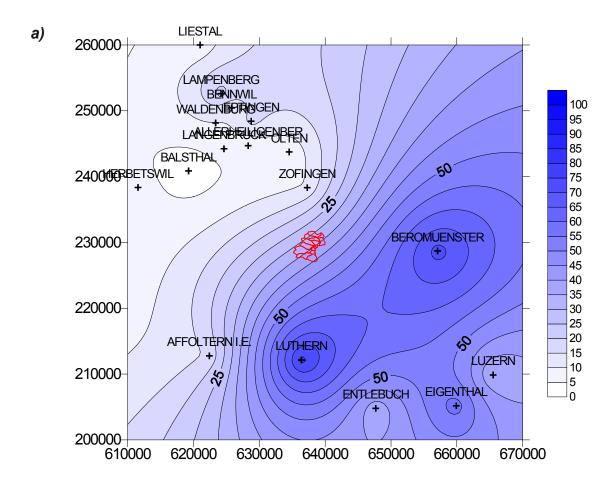
Anhang 2f: In der Umgebung des Huebbachs während grosser Hochwasser gemessene Niederschlagsmengen.

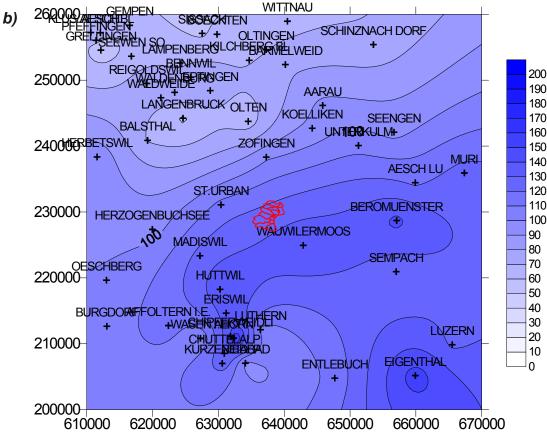
Höhe	026400 233860 422	RISWIL F 631175 214640 730	HUTTWIL MA 630250 218250 630	ADISWIL S 627200 223350 540	6604 TAMPFI 5 633880 222350 705	6610 ST.URBAN L ¹ 630400 231080 491	6630 UTHERN 636390 212130 762	6634 AHORN N 632310 210850 1015	6648 WAUWIL 644250 226050 506	6651 EGOLZWIL ZC 642913 225540 521	6670 DFINGEN C 637280 238320 425	6675 DFTRINGEN 638550 239370 414	6690 HERBETSWIL 611570 238350 524	6710 LANGENBRUCK 624630 244230 740	BALSTHAL 619250 240860	6747 WANGEN/OLTEN 632660 243520 416	OLTEN 634530 243750
1994-08-02 1994-08-03 1994-08-04 1994-08-05 1994-08-06 1994-08-07 1994-08-08 5-6.8.1994	0 0 0 0 41 13.7 5.5 41.0		0 0 0 0 4.4 23.2 0.2 4.4 21.2	0 0 0 0 24.2 11.9 5.7 24.2		0 0 0 0 25.6 9.5 1.8 25.6	0 0 0 0 40 27.7 1.2 40.0		0 0 0 0 44.7 13.7 1 44.7		0 0 0 0 8 9 2 8.0		0 0 0 0.3 0.4 9.5 20.5 0.7	0 0 0 0 44.2 9.4 19.1 44.2	0 0 0 18.4 8 24.6 18.4	0 0 0 28.2 8.6 14.8 28.2 2.1	
1995-12-21 1995-12-22 1995-12-23 1995-12-24 1995-12-25 2425.12.1995 2125.12.1995	2.5 5.9 8.9 50.5 27.7 78.2 95.5		0.6 9 14.5 51.6 57.6 109.2 133.3	0.9 10.1 9.9 73.8 38.6 112.4 133.3		1.1 6.9 9.3 74.2 28.6 102.8 120.1	0.5 20.4 16 40 54.6 94.6 131.5		0.7 5.5 4.9 65.5 47.7 113.2 124.3		6.3 4 19.8 58.1 27 85.1 115.2		2.9 12.6 15.4 45.8 14.2 60.0 90.9	4.3 4.8 8.2 35.5 9.8 45.3 62.6	7.3 13.3 34.5 11.9 46.4 70.3	2.3 21.3 9.5 35.5 9.2 44.7 77.8	
1999-02-15 1999-02-16 1999-02-17 1999-02-18 1999-02-19 1999-02-20 1999-02-21 1999-02-22 1819.2-1999	0 1.5 10.6 12.9 22.6 14 15.9 3.9	0 1.5 7.1 3.2 11.8 16.7 22 17.1 15.0	1.8 13 8.2 14 15.3 21.8 13.4 22.2	1.5 6.3 17 18.1 14 14.3 9.3 35.1		0 3.8 14.4 17.2 22.4 17.2 16.1 3.8 39.6	2.5 5.2 13.1 26.3 22.5 37.7 18.2 39.4	0 3 13.4 17.8 23.6 20.7 25.7 24.8 41.4	1.5 6.8 8.9 11.4 8.2 12 7.1 20.3		13.8 14.2 33.3 17.3 13.2 8.8 47.5		0 4.5 9 27.7 15.6 16.8 9.4 15.2 43.3	0 7.2 13.7 27.6 49.2 27.5 13.7 8.3 76.8	2.3 10 21.5 10.8 10 8.7 11.4	0 2.9 7.9 13.1 32.9 15.4 14.8 3.5 46.0	
1721.21999 1799-07-04 1999-07-05 1999-07-06 1999-07-07 1999-07-08 1999-07-09	76.0 0 11.3 10.7 18.7 0.3 0.2	13.0 60.8 0 3.2 3.4 8.1 3.1 0 4.5	72.3 0 7.9 2.4 8.2 1.6 0	99.7 2.5 2.1 11.1 1 0.7 7.3 5.8		87.3 11.4 1.4 10 13.1 0 1 8.9	104.8 1 1.6 2.3 8 0 0	101.2 0 1.8 2.9 11 0.3	20.3 47.3 0 1 0.9 14.7 0 0		91.8 0 7.5 5.9 26.4 3.2 0.8 14.3		78.5 78.5 0.2 31 13.2 8.5 0.7 0.2 24.9	76.6 131.7 1.9 43.9 59.2 1.5 0.6 0.6	61.0 0.7 28.9 17.2 2.4 0 1.6	84.1 0 9.8 8.7 10.7 0 0.3	
1999-07-11 1999-07-12 1999-07-13 1999-07-14 1213.7.1999 913.7.1999 2005-08-17 2005-08-18	23.9 6.9 13.9 3.7 20.8 55.7	10.7 8.4 21.6 2.6 30.0 45.2	3.2 11.2 16.7 1.5 27.9 35.7 0 8.2	5.6 1.3 0.8 22.5 5.1 23.3 37.7 0 10.3	0 11.5	6.9 6.1 9.9 25.2 8.8 35.1 51.1 0	3.6 6.8 9.8 28.9 1.5 38.7 49.3	18.9 9.1 27.8 3.4 36.9 60.8	3.7 2.5 48.9 8 51.4 66.5 0 37.3		14.3 3.4 10.5 5.3 4.2 15.8 34.3		24.9 8 1.6 19.9 1 21.5 54.6 0	3.5 12.5 23.5 0.1 36.0 73.0	21.7 0.9 20.2 1.1 21.1 75.4	20 3.99 15 12.3 0.7 27.3 51.5 0 5.3	
2005-08-19 2005-08-20 2005-08-21 2005-08-22 2005-08-23 2122.8.2005 1822.8.2005	49.1 2.9 4.6 24.2 7.9 2.1 32.1 88.7	9.5 12.6 73.5 18.4 0.5 91.9 129.2	11.3 52.5 23 0 75.5 103.0	3.4 6.3 41.3 11.7 0.4 53.0 73.0	30 12.2 36.6 20.8 0.2 57.4 111.1	3.2 5.4 31.3 13 0 44.3 72.7	19.3 22.1 87.8 58.1 0.2 145.9 207.6		37.3 36.1 10.1 45.7 15.5 0.5 61.2 144.7		8.6 2.4 26.2 14.3 0 40.5 58.2		22.7 2.2 1.1 18.4 3.7 0 22.1 48.1 26.3	3.2 3.3 34.6 10 2.2 44.6 61.4	3.8 1 18.5 1.8 1.7 20.3 42.6	5.5 5.9 4.5 13.8 0 0 13.8 29.5 21.6	
2007-06-15 2007-06-16 2007-06-17 2007-06-18 2007-06-19 2007-06-20 2007-06-21 2007-06-22	14.4 0 22.5 4.1 0 8 15.8 7.4	14.9 0 28.8 6.2 0 0 16.3 6.3	25.8 0 20 12.8 0 0 17 4	9.5 0 23 20.2 0 6.5 40.9	9 0 16.2 13.4 0 6.8 20.3 4.6	21.2 0 19.4 3.4 0 5.6 25.4 2.7	13 0 27.3 9.4 0 20.4 14.2 3.7		12.1 0 14.5 10 0 9.8 13.4 6.8		15.1 0 19.8 0.8 0 4.5 19.2 9.7		28.2 0 13.1 4 1.4 33.2 15.5 10.7	37 0.8 11 0.5 0.2 10.2 15	27.5 1 13.4 1.2 1.1 27	18.5 0 15.1 0.9 0 10.8 13.6	
2021.6.2007 1721.6.2007 2007-08-04 2007-08-05 2007-08-06 2007-08-07 2007-08-08 2007-08-09	23.8 50.4 0 0 10.9 6.9 71.5 8.1	16.3 51.3 0 0 11.7 27.6 55.5 10.5	17.0 49.8 0 0 5.5 25 62.5 8.9	47.4 90.6 0 0 13.5 27 60.1 8	27.1 56.7 0 0 3.7 24.2 62.8 4.9	31.0 53.8 0 0 5 20.8 54.5 12.3	34.6 71.3 0 0 30.1 31.3 60.2 7.5		23.2 47.7 0 0 3.9 21.6 76 7.3		23.7 44.3 0 0 1.7 16.5 79.4 6.8		48.7 67.2 0 0 25.7 6.7 80.5 12.2	25.2 36.9 0 4.5 11 98.5	56.7 0 0 8.6 8.9 86.6	24.4 40.4 0 0 10.8 12.2 92.5 13.8	
2007-08-10 89.8.2007 59.8.2007 2009-06-25 2009-06-26 2009-06-27 2009-06-28 2009-06-29	2.4 79.6 97.4 0 2.5 16.6 0	2.3 66.0 105.3 0 0 3.8 0	0 71.4 101.9 0 0 3.8 0	1.9 68.1 108.6 0 1 5.1 0	1.8 67.7 95.6 0 1 5.3 0	2.1 66.8 92.6 0 2 6.8 0	1.6 67.7 129.1 0 0.2 7.1 0		3.3 83.3 108.8 0 1.6 6.9 0		4.5 86.2 104.4 0 0.3 13.5 0		2.6 92.7 125.1 0 0.9 14.5 0	2.5 113.5 129.0 0 27 5.8 0.3 0.2	96.2 113.7 0 1.5 9.5 0 0.2	2.5 106.3 129.3 0 5.8 17.2 0	
2009-06-30 2009-07-01 2009-07-02 2009-07-03 2009-07-04 2009-07-05 2009-07-06 34.7.2009	0 0 7 17.8 17 0.5 24.8	0 0 1.5 0.9 2.4 0.2 2.4	0 0 0 4.2 0.5 21.7 0 4.7	0 0 0.6 0.6 24 0	0 0 0 0.4 0.6 14.9 0	0 0 9.1 11.3 16.7 0.5 20.4	0 0 0 2.8 0.7 23.8 0 3.5		0 0 12 13.8 11.2 0 25.8		0 0.8 13.4 0.6 7 0.2		0 0 1 7.1 5.8 30.1 2.4 12.9	0.2 0 0 13.4 0 15 6	0 0.3 22.8 0 29 2.8 22.8	0 0 10.2 8.9 4.7	
1.75.7.2009 2009-08-01 2009-08-02 2009-08-03 2009-08-04 2009-08-05 2009-08-06 2009-08-07 2009-08-08	41.8 0.9 13.2 5 0 0 0 0	4.8 0 17.3 14.2 0 0 0 0	26.4 0 26 13.2 0 0 0	25.2 1.3 14 7.8 0 0 0 0	15.9 0 14.3 10 0 0 0 0	37.1 0 9.8 21.5 0 0 0 0	27.3 0 22 15.1 0 0 0 0 0.2 16.6		37 0 21.9 2.9 0 0 0 0		21.8 0 12.1 3.2 0 0 0		44 1.2 24.5 3.5 0 0 0 0 0.8 19.4	28.4 0 12.2 1.6 0 0 0 0	0.8 15.5 2.8 0 0 0	19.1 0.3 7 0 0 0 0	
2009-08-09 2009-08-10 78.8.2009 48.8.2009 2015-04-24 2015-04-25 2015-04-26	0 6.4 19.1 19.1 0 2.1 0.4	0.2 8.3 15.8 15.8 0 9.5 3.9	14.2 0 10 14.2 14.2 0 4.2 0.6	0 9.5 16.2 16.2 0 2.9	0 11.2 15.0 15.0 0 3.3 0.8	0 34.9 19.8 19.8 0 1.2 2.4	0 5.3 16.8 16.8 0 6.7 3.7		36.6 15.0 15.0	0 2 0.7	16.4 0 2.6 16.4 16.4 0 1.2 1.9		3.4 7.8 20.2 20.2 0 3.1 0	2.4 8.5 60.0 60.0 0 3.7 0.8	1.6 8.6 59.6 59.6 0 2.8 0.7	25.3 0 3.2 26.3 26.3 0 1 1	
2015-04-27 2015-04-28 2015-04-29 2015-05-01 2015-05-01 2015-05-02 2015-05-03 2015-05-05	12.9 0.5 0 27.6 76.6 15.9 17.4 4.3 21.9	32.8 4.2 0.5 15.5 63.4 14.3 17.7 2.7	20.7 2.3 0.1 14.8 55.5 14.2 22.1 3.1 27.8	14.4 0 0 21 62.3 13 19.5 3.3 25.8	20.2 1.6 0 19.7 52.9 13.4 16.1 2.5 26.4	13.6 0.3 0 29.2 71.4 15.2 17.5 3.2 25.6	33.1 3.2 1.5 13.9 58.9 15 22.3 1.8 28.7			18.6 1.4 0 13.9 54.7 14.4 16.9 2.4 22.2	21.5 1.1 0 19.8 69.3 28.9 17 3.7 22.2		23.4 2 0 21 54.6 17.5 14.2 3 10.4	15.1 0.4 0 20.9 56.9 24.2 12.3 2.7 15.5	0.5 0 19.8 49.4 20.8 14 3.3	14.2 0 9.5 56.2 15.2 14.2 2.8 18.8	
12.5.2015 30.44.5.2015 2016-07-07 2016-07-08 2016-07-09 2016-07-10 2016-07-11 2016-07-12 2016-07-12	92.5 141.8 0 0 0 0 52.3 21.9 6.3	77.7 113.6 0 0 0 0 39.5 32.9 6.4	69.7 109.7 0 0 0 0 57.9 23.5 22.9	75.3 119.1 0 0 0 0 78.7 42.3 9.1	66.3 104.6 0 0 0 0 55.3 41.5 9.5	86.6 136.5 0 0 0 0 0 65.3 26.8	73.9 111.9 0 0 0 0 37.3 27.5 9.8			69.1 102.3 0 0 0 0 0 30.4 29.6 6.3	98.2 138.7 0 0 0 0 84.5 22.7 9.1		72.1 110.3 0 0 0 0 0 18.4 12 1.7	81.1 117.0 0 0 0 0 24 12.7 2.5	70.2 107.3 0 0 0 0 0 20.6 12.7	71.4 97.9 0 0 0 0 38.2 13.1 4.2	

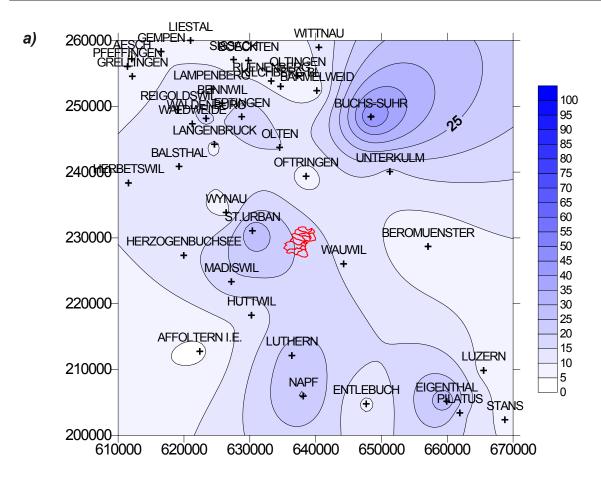

Anhang 2g: In der Umgebung des Huebbachs während grosser Hochwasser gemessene Niederschlagsmengen.

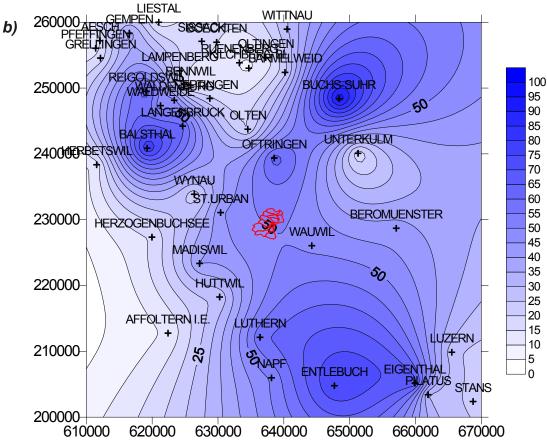


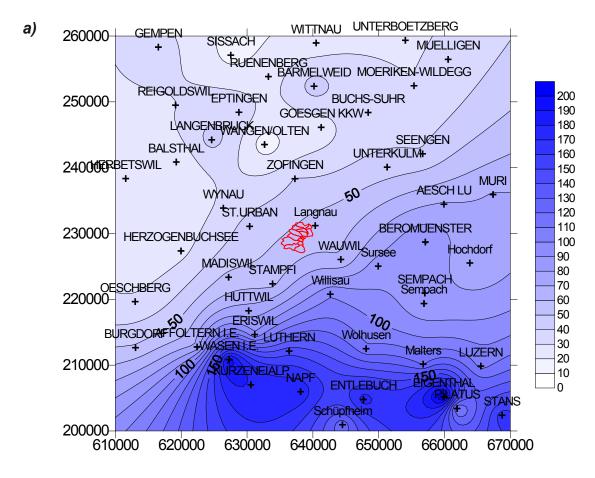
Nr.	6760 GOESGEN KKW		6780 AARAU		6800 SEMPACH I	6840 BEROMUENSTER	6860 UNTERKULM		6900 SEENGEN	6920 MURI N	6925 MOERIKEN-WILDEGG	6928 MUELLIGEN	6940 UNTERBOETZBERG	Langnau	Sursee
X Y	641260 246130	640180 252380	645850 246170	648400 248380	657010 220940	657080 228700	651280 240080	659915 234450	656680 242110	667370 235920	655360 252450	660550 256450	654050 259350		(LU) 649930 225040
Höhe 1994-08-02	380	0	408	389	515	640	470		445	540	405	360	514		
1994-08-03 1994-08-04 1994-08-05	0 0	Ö		0 0		0 0 0	0 0	o o		0					
1994-08-06 1994-08-07	16.4 7.4	19.8		4.1 7.4		13 12.7	9.9			0.4 7.9					
1994-08-08 56.8.1994 1995-12-20	4.7 16.4 11.7	8.9		4.7 4.1 16.3		1.9 13.0 12	1.0	0.9		4.5 0.4					
1995-12-21 1995-12-22	5.6 3.2	4.7 5		7.1 3.3		1.8 5.1	5.5 7.8	8							
1995-12-23 1995-12-24 1995-12-25	6.7 33.5 20	39.4		5.6 38.5 23.7		2.4 57.7 50.8	7.4 53.5 33.3	5							
2425.12.1995 2125.12.1995 1999-02-15	53.5 69.0	76.9		62.2 78.2	0	108.5 117.8 0	86.8 107.5	5	0	0		0	0		
1999-02-16 1999-02-17	1.5 4.8	3.9 14.3		1.6 6.3	0.5 5.7	4.1 14.3	7	4.7 8.1	3.7 10.8	5 6.2		1.8 7.3	4.8 10.8		
1999-02-18 1999-02-19 1999-02-20	11.4 39.8 19.2	54.2		12.3 38.6 21.8	9.4 12 10.5	17.2 25.9 16.2	45.7	36.1	10.7 36.6 23.8	16.8 26.3 17.6		15.3 34 19.9	37.9		
1999-02-21 1999-02-22	20 3.8	45.6 7.9		23.6 2.5	13.9 7.7	13 10.1	20.9 6.5	13.2 3.9	21.3 2.8	9 2.3		34.9 3.9	25.6		
1819.2.1999 1721.21999 1999-07-04	51.2 95.2 0	158.7		50.9 102.6	21.4 51.5 0	43.1 86.6 0	63.4 118.9 0	80.1	47.3 103.2	43.1 75.9	0	49.3 111.4	111.8		
1999-07-05 1999-07-06	15.8	29.6		0.4 10.5	1.6 2	1.4 2.1	0.1 10.8	1.2 3.4	6.5		0 15.7		17.4		
1999-07-07 1999-07-08 1999-07-09		0.9		8.4 3.5 0.1	7.2 0 0	12 0.1 0	14.2 1.3 2.5	0.4	1.1	20.1 0 0	11.7 2.6 0.1	1.6	1.7		
1999-07-10 1999-07-11 1999-07-12	24 8.5 4.1	30.9 2.4		22.3 2.6 14.9	6.1 6.5 46	12.8 1.8 4.4		6.6 2.6	8.3 5.2	4.9 3 29.7	26.4 1.6 2.9	23.8	26.6		
1999-07-13 1999-07-14	18.6 2.4	25.6 1.4		22 1.7	20.3 2.6	38.7 7.2	21.2 2.7	2 13.4 9.6	22.4 2.6	9 5.5	16.9 0.8	27.7 3 0.6	7 36.8 3 0.9		
1213.7.1999 913.7.1999 2005-08-17	22.7 55.3	80.9		36.9 61.9	66.3 78.9	43.1 57.7 0	27.7 39.0	38.8	27.9 43.3	38.7 46.6	19.8 47.9 0	58.4	81.5		0
2005-08-18 2005-08-19	3.2 9.3	5.5		1.3 10.7	14.2 35.5	1.2 27	38.8	16.3	16.9	0.5 31.3	18.5 0	1.2	8.3 5.3	44.8 31.5	8.1 22.8
2005-08-20 2005-08-21 2005-08-22	6.9 18.5 5.5	34.1		10.4 25.9 10.9	24.4 70.2 15.3	18.1 80.6 10		63	6.9 34 7.1	26.3 61.2 9.5	12.2 19.8 10.3	23	20.5	20.4	14.6 48 37.2
2005-08-23 2122.8.2005 1822.8.2005	0.4 24.0 43.4	45.8		0 36.8 59.2	0 85.5 159.6	0 90.6 136.9	0 45.2 94.1	0.3 70.9 102.6	0.9 41.1 65.4	0 70.7 128.8	0 30.1 60.8			0.3 53.6 135.5	0 85.2 130.7
2007-06-14 2007-06-15	20.2 16.3	17.4 31.1		19.7 16.6	7.7 18.3	22.3 21.3	16.2 16.5	2 14.9 5 15.7	9.4 17.3	25 1	12.7 25.2	9.2 2 23.3	2 14 3 20	18.2 16.6	15.9 17.1
2007-06-16 2007-06-17 2007-06-18	13.7	12.6		0.5 15.9 2.4	0 16.2 22.5	0 14 7.8	0.2 14 1.5	10.5		0 14 4.2	0 10 2.7	11.5	10.4	0.1 6.1 12	0.4 3.6 10.4
2007-06-19 2007-06-20	0 6	0.1 22.6		0 4.2	0 4.7	0 10.3	0 4	0 12	0 6	0 2.4	0 3.2	0 11.8	0 3 2.1	5.2 0.1	4.4 1.4
2007-06-21 2007-06-22 2021.6.2007	15 3 21.0	2.6		17.2 5.1 21.4	12.4 3.8 17.1	18.8 7.3 29.1		4.3	4.1	33.7 4 36.1	19 7.6 22.2	3.2	4.6	5.9	26.3 6.2 27.7
1721.6.2007 2007-08-04 2007-08-05	35.0 0 0	0		39.7 0 0	55.8 0 0	50.9 0 0	44.9 0 0	0	42.0 0 0		34.9 0	0	0	52.6 0 0	46.1 0
2007-08-06 2007-08-07	0.2 16.6	0.1 12		0 16.8	0 48.3	0 40.9	0 19.2	0 0 37.8	0 25	0 49.4	0 24.3	0 0 20.5) 0 5 17	2 26	1.1 54.2
2007-08-08 2007-08-09 2007-08-10	91 8.1 7	100.1 12.2 2.1		81.7 8.4 5.3	76 6.7 2	78 8.1 2.5	8.2	5.3	75.3 7.8 5.6	74.6 6.4 2.8	82.8 11 4.8	6	5.4	7.9	79.4 6 2.6
89.8.2007 59.8.2007	99.1 115.9	112.3 124.4		90.1 106.9	82.7 131.0	86.1 127.0	93.7 112.9	95.8 133.6	83.1 108.1	81.0 130.4	93.8 118.1	83.0 103.5	75.4 92.4	77.2 105.2	85.4 140.7
2009-06-25 2009-06-26 2009-06-27	0.2 7.7	9.2		0.1 20.1 11.1	0 25 1.2	24.9 5.5		22.6		0 62 5.5	0.2 2.4 1.4	1.2	2 0	6.4	4 2.2
2009-06-28 2009-06-29 2009-06-30	0	0 0.8 0		0	0	0	0	1 -1	0 0 0	0	0	1.6	1.3	0	0 0 0
2009-07-01 2009-07-02	0	0		0	0	0	0	'l "	0 0.4	0	0 3.6			0	0
2009-07-03 2009-07-04 2009-07-05		0		0.6 0 6.6	12 11.6 13.5	10.9 0 7.3	1.8	0	2.6 0 2.6	7.7 0 10.5	9.6 0 3.4	27.1	0	22.9	5.1 31.9 9.4
2009-07-06 34.7.2009	0.2 29.1	1.3 8.4		0.1 0.6	0 23.6	0 10.9	0 3.9	0 9 5.3	0 2.6	0.6 7.7	2.1 9.6	0.5 29.3	5 3 3.7	0 29.6	0 37
1.75.7.2009 2009-08-01 2009-08-02	34.9 0.1 7.8	0		7.2 0 11.1	37.1 0 21.5	18.2 0 13.4	8.1 0 13.3	0	5.6 0 11.9	18.2 0 13.6	16.6 0 8.6	0	0	0.3	46.4 0 14.4
2009-08-03 2009-08-04 2009-08-05		0.5		0.3	9.5 0 0	3.5 0	0.2 0 0	0	0 0 0	7	0	0.2	0.1	3.3 0 0	8.9 0
2009-08-06 2009-08-07	0.2 0	0		0	0	0	0	0 0	0	0	0	o o	0	0	0
2009-08-08 2009-08-09 2009-08-10		1.8		25.1 0.1 2.6	14.5 0 19.5	18.1 0 17.6	15.2 4 1.5	0.5	16.3 0.2 2	16.1 0 9.5	13.3 3.2 2		0.1	0	9.2 0.1 29.2
78.8.2009 48.8.2009 2015-04-24		22.0 22.0		25.1 25.1 0	14.5 14.5 0	18.1 18.1 0	15.2 15.2 0	2 23.7 2 23.7	16.3 16.3 0	16.1 16.1	13.3 13.3	3 11.7 3 11.7	7 16.0 16.0	14.2	9.2 9.2 0
2015-04-25 2015-04-26	1.1 0.1	2.2		1.1 0.1	4.2 0.5	4.5 1.2	5.7 0.3	2.7 3 1.3	3.1 4.3	3.6 0.1	0 1.1 0	0	3.9	2.6 1.6	2.9 1.9
2015-04-27 2015-04-28 2015-04-29	13.9 0.1 0	3.1		11.5 0.1 0	37.7 3.4 1.4	41.2 2.3 0.2	1.7	1.1	33.8 1.6 0	52.5 2.9 0.2	18.3 0.2 0	2 0	0.4		31.9 3.2 0.1
2015-04-30 2015-05-01	16.7 47	14.4 46.9		14.6 36.2	8.8 42.7	11.5 14.8	18.2 60.3	13.9 53.2	18.8 49.3	12.5 49.1	15.1 41.7	20.8 34.8	19.6 3 37	20.1 64.9	12.3 53
2015-05-02 2015-05-03 2015-05-04	17.8 12.4 2.4	13.4 2.3		22.4 11.9 1.1	17.5 18.8 1.3	21.8 19.8 2.2	17.1 1.7	18.3	13.5	21.8 17.1 1.2	25 14 0	9.6	8.5	16.5 2.7	14.6 18.7 1.6
2015-05-05 12.5.2015 30.44.5.2015		18.4 64.9		20 58.6 86.2	31.5 60.2 89.1	39.2 36.6 70.1	31.2	33.6 75.8	29.4	34.1 70.9 101.7	25.3 66.7 95.8	59.1	55.1	24.9 80.9	31.6 67.6 100.2
2016-07-07 2016-07-08	0	0 0		0 0	0	0 0	0		0	0 0	95.8 0 0	0 0	0 0	0	0 0
2016-07-09 2016-07-10 2016-07-11	0 25.3	19.6		0 0 38.2	0 0 23	0 0 22.7	0 0 68.3		0 0 71.9	0 0 33.3	0 0 31		16.5	65.9	0 0 33.5
2016-07-12 2016-07-13	13.1 4.5	12.3 4.1		16.9 5.4	34.4 8.5	54.4 5.6	24.2 3.9		22.9 3.1	41.7 4.8	24.1 3.5	17.6 2.9	12.8 3.3	24.9 6.8	43.7 13.4
1112.7.2016 812.7.2016				55.1 55.1	57.4 57.4	77.1 77.1	92.5 92.5		94.8 94.8	75.0 75.0	55.1 55.1				77.2 77.2

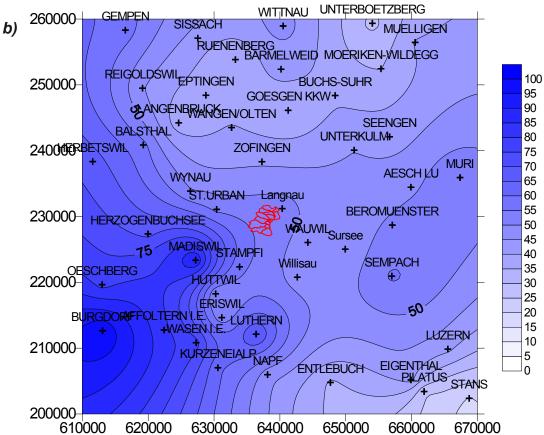

Anhang 2h: In der Umgebung des Huebbachs während grosser Hochwasser gemessene Niederschlagsmengen.

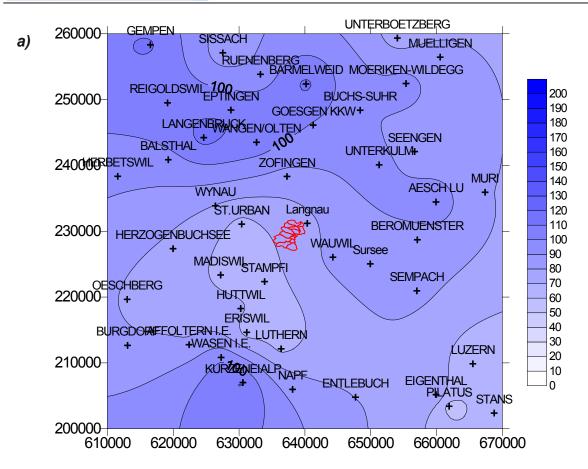


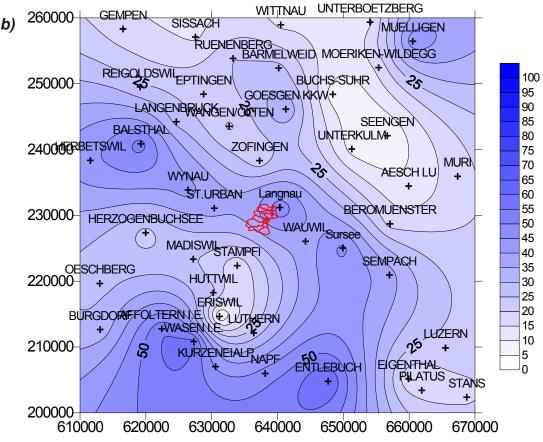

Anhang 3a: Niederschlagsverteilung am a) 24.6.1931, b) 23.8.1931 (Niederschlag in mm).

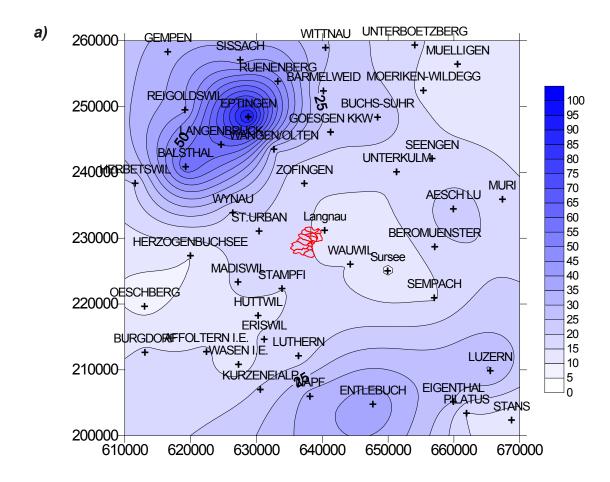


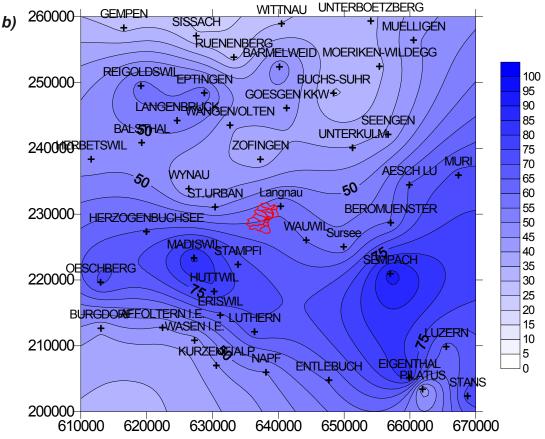

Anhang 3b: Niederschlagsverteilung am a) 16.-20.7.1932, b) 18.-22.11.1972 (Niederschlag in mm).

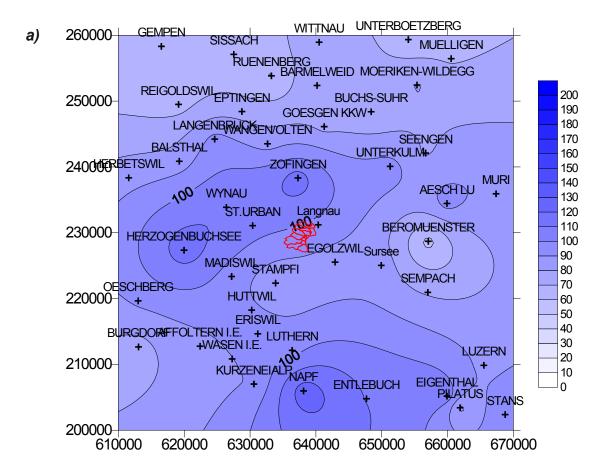


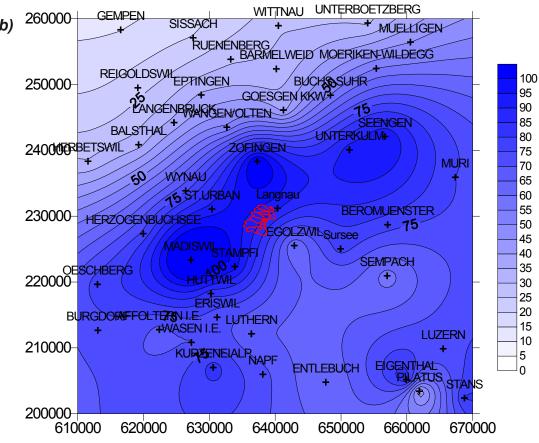



Anhang 3c: Niederschlagsverteilung am a) 12.-16.6.1986, b) 16.-20.6.1986 (Niederschlag in mm).




Anhang 3d: Niederschlagsverteilung am a) 21.-22.8.2005, b) 17.-21.6.2007 (Niederschlag in mm).



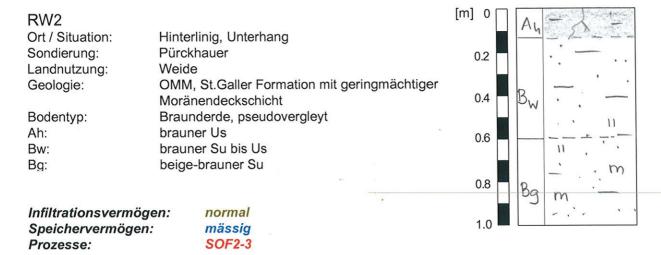

Anhang 3e: Niederschlagsverteilung am a) 8.-9.8.2007, b) 1.-5.7.2009 (Niederschlag in mm).

Anhang 3f: Niederschlagsverteilung am a) 4.-8.8.2009, b) 25.-29.7.2010 (Niederschlag in mm).

Anhang 3g: Niederschlagsverteilung am a) 1.-3.5.2015, b) 11.-12.7.2016 (Niederschlag in mm).

Boden	typen	Haupt	horizonte
O F R	Regosol Fluvisol Rendzina	O T A	org. Auflagehorizont Torf/hydromorpher org. Horizont organo-mineralischer Oberboden-
Rk K B	Ranker Kalkbraunerde Braunerde	E I	horizont Eluvialhorizont Illuvialhorizont
T	Parabraunerde	В	Mittelbodenhorizont
Y	Braunerde-Pseudogley	С	Untergrund (Ausgangsmaterial)
I V	Pseudogley Braunerde-Gley	R	Felsunterlage
W	Buntgley		
G A	Fahlgley Aueboden	Unter	teilung Haupthorizonte
N	Halbmoor	Zusta	nd org. Substanz
M	Moor	l f	Streuezone Fermentationszone
		h	Humusstoffzone
Körnu	ng	а	Anmoor
• •	Sand (S), sandig (s)	org	organisches Material im Unterboden
			tterungszustand
	Silt (U), siltig (u)	ch w	chem. vollständig verwittert Verwitterungshorizont
	one (o), ontig (d)	Z	Zersatz Muttergestein
= =	Ton (T), tonig (t)	Merkr	nale des Sauerstoffmangels
=_·	Lehm (L), lehmig (I)	m cn (g)	Marmorierungen punktförmige, schwarze Knöllchen schwache Rostfleckung
= .	l a	g	mässige Rostfleckung
• —	Ls	99	Horizont mit starker Rostfleckung infolge periodischer Vernässung
=_·	stark sandiger L (Ls4)	r	dauernd, vernässter, stark reduzierter Horizont
<u></u>	Wasserspiegel		

Anhang 4.2a: Die im Einzugsgebiet des Huebbachs untersuchten Bodenprofile (RW1 - RW24),


ihre Eigenschaften, die Einschätzung von Infiltration und Speicherfähigkeit

mit Angabe des zu erwartenden dominanten Abflussprozesses. Abkürzungen der Bodenprofile siehe Legende (Anhang 4.1).

Prozesse: SSF (Subsurface Flow = Abfluss im Boden), SOF (Saturated Overland Flow = gesättigter Oberflächenabfluss), DP (Deep Percolation = Tiefensickerung), SOF1: rasch, SOF2: leicht verzögert, SOF3 stark

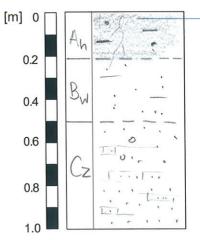
bis sehr stark verzögert abfliessend).

RW3

Ort / Situation: Hinterlinig, Unterhang

Sondierung: Pürckhauer Landnutzung: Weide

Geologie: OMM, St.Galler Formation mit geringmächtiger

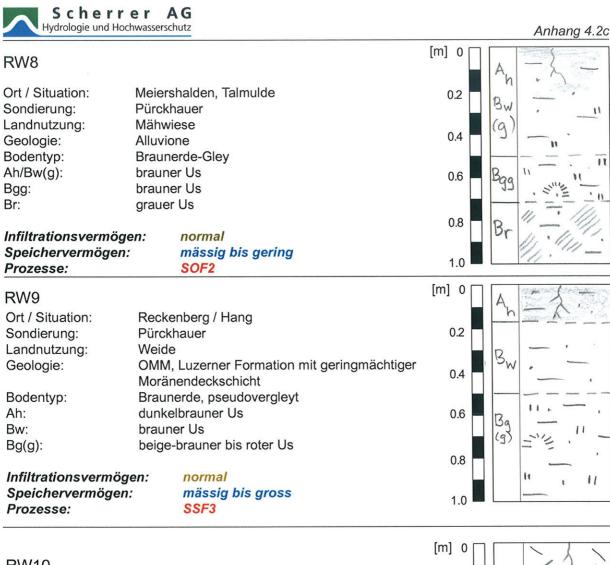

Moränendeckschicht

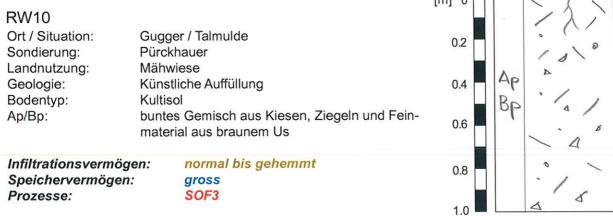
Bodentyp: Braunderde Ah: brauner Us

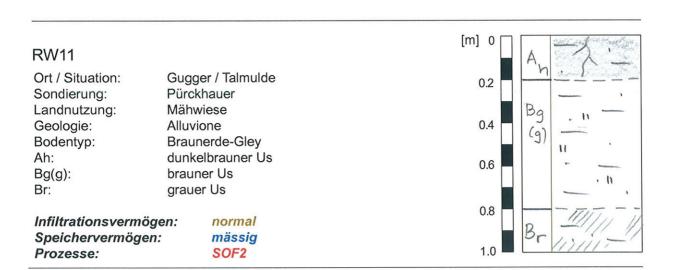
Bw: beige-brauner Su bis Us
Bg: beige-brauner Su

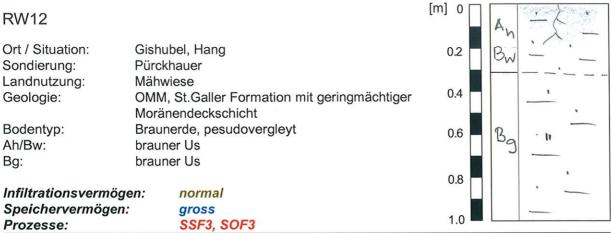
Cz: verwitterter Sandsteinfels (Su) mit Kiesen

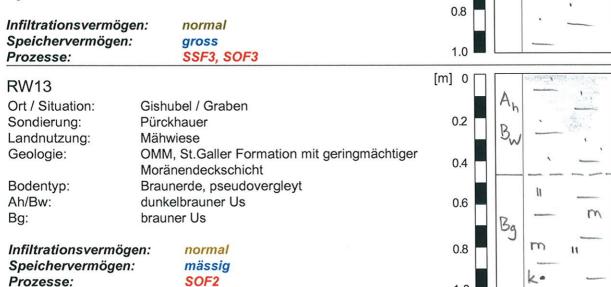
Infiltrationsvermögen: normal Speichervermögen: gross Prozesse: SOF3



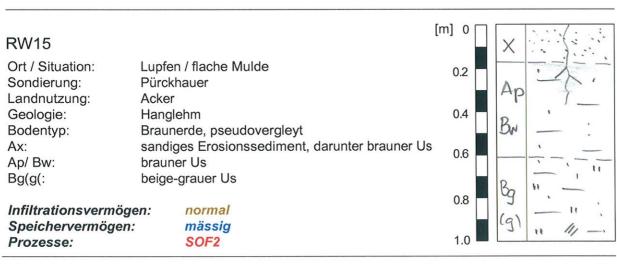

8.0

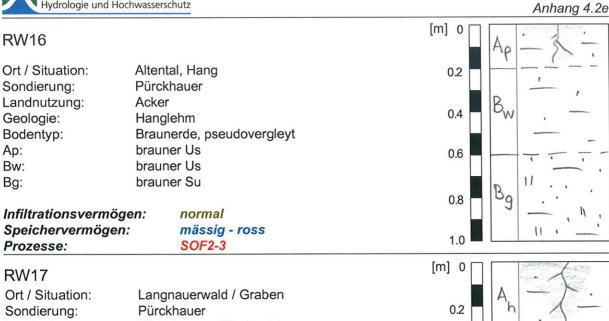

1.0

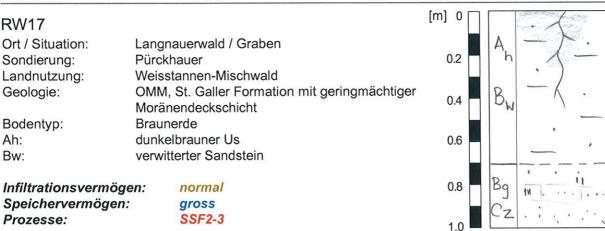




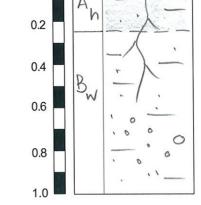


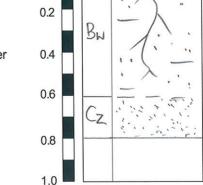






1.0



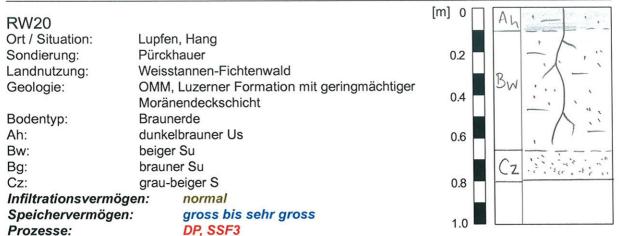


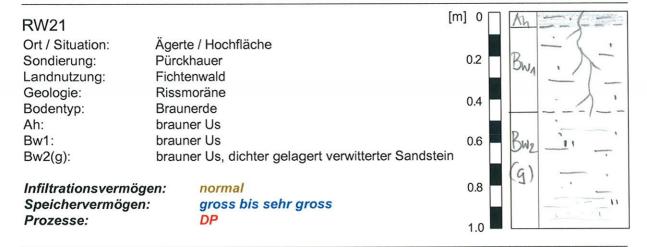
gross SSF3 / DP

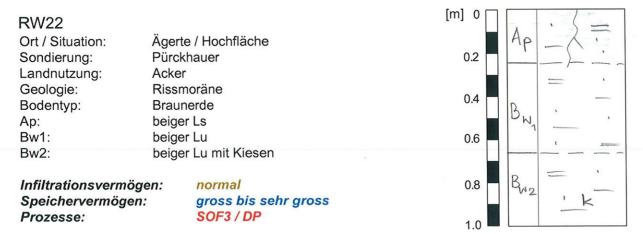
[m]

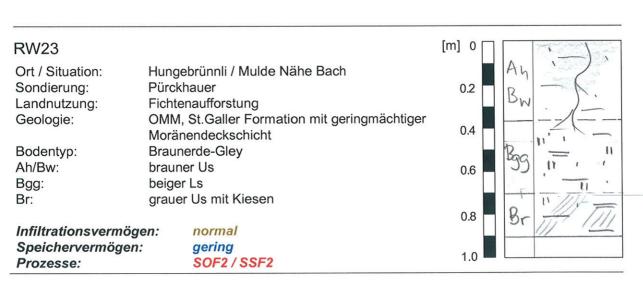
Cz: beiger verfestigter Sand

Infiltrationsvermögen: normal


Speichervermögen: Prozesse:


Speichervermögen:


Prozesse:


mässig-gross SSF2-3

RW24

Ort / Situation:

Oberfronhofen, Mulde Nähe Bach

Sondierung:

Pürckhauer

Landnutzung:

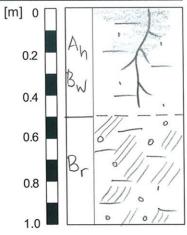
Fichtenwald

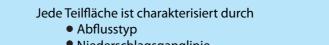
Geologie: Bodentyp: Stauschotter Braunerde-Gley

Ah/Bw:

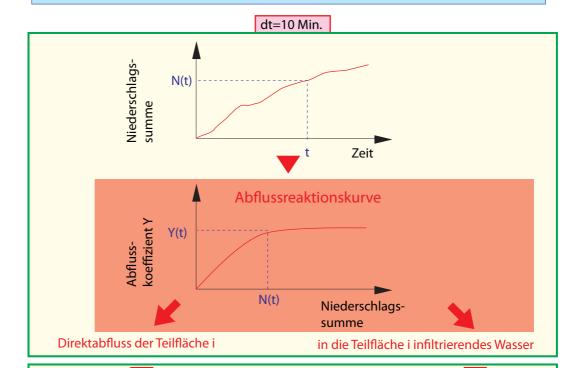
dunkelbrauner Us

Br:

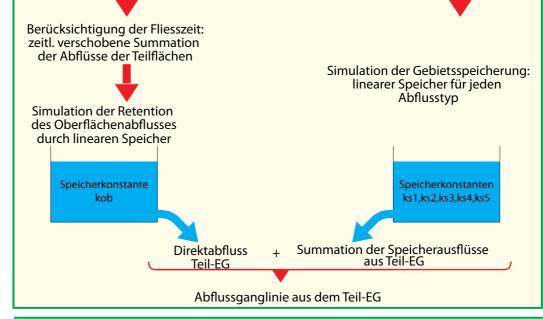

brauner Su


Infiltrationsvermögen: Speichervermögen:

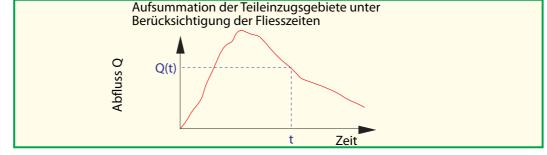
normal


Prozesse:

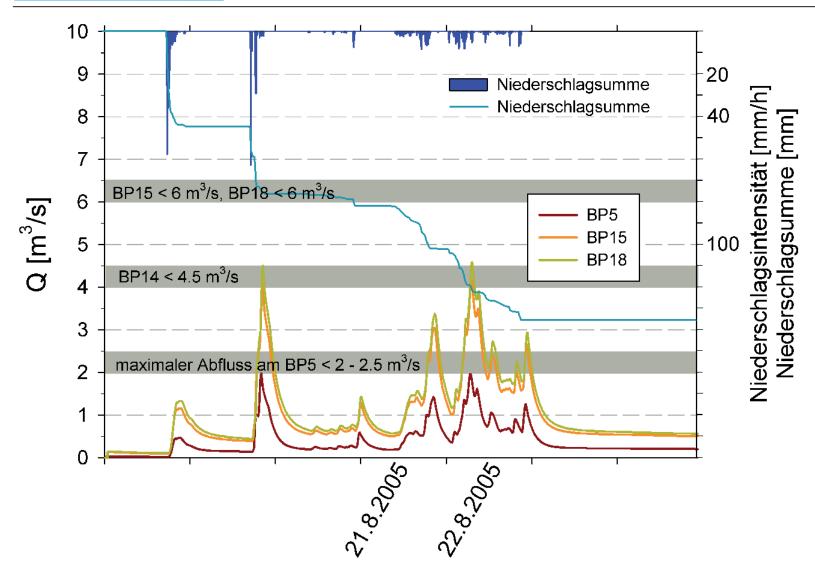
mässig SOF2



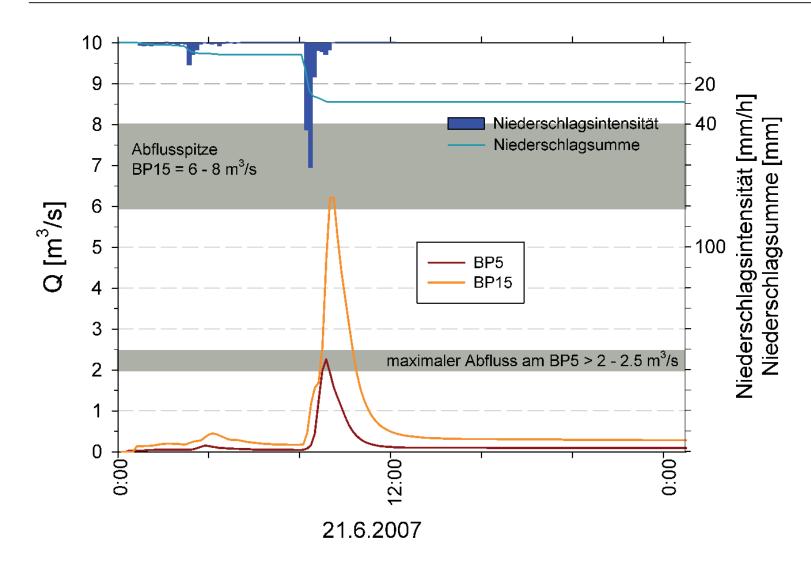
- Niederschlagsganglinie
- Fliesszeit bis zum Teil-EG-Ausfluss

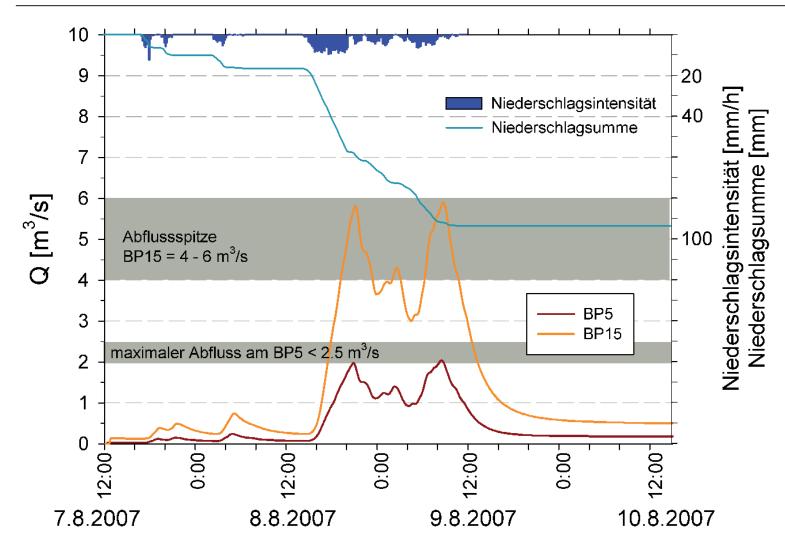


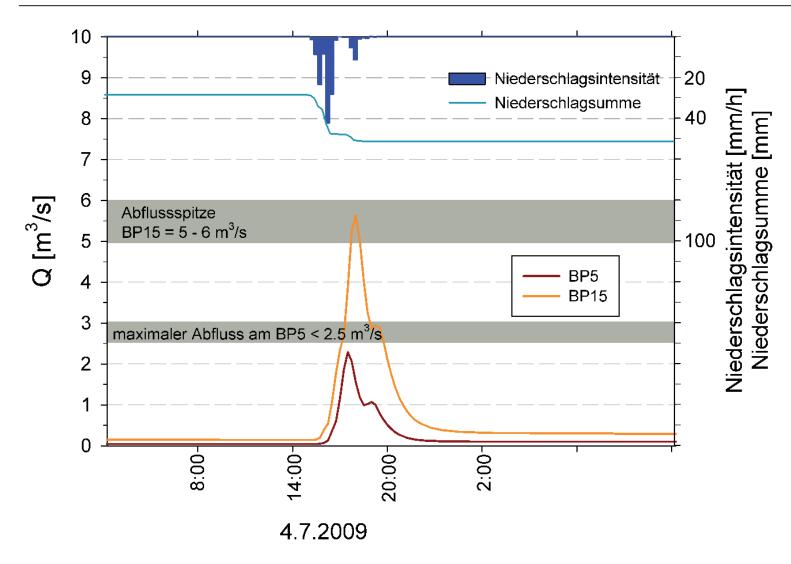
Stufe Teilfläche

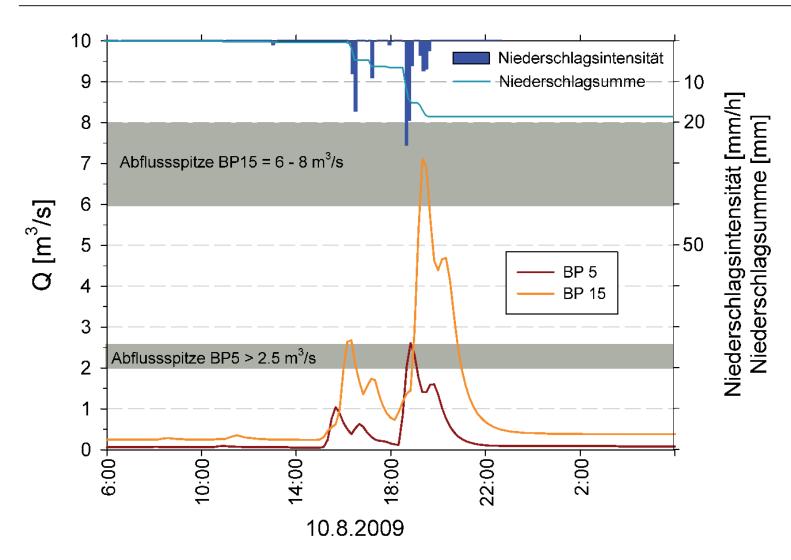


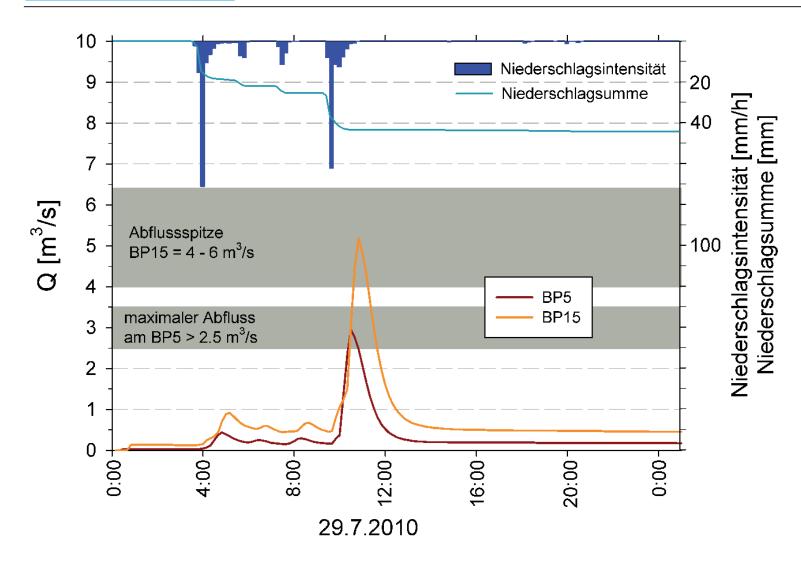
Stufe Teileinzugsgebiet

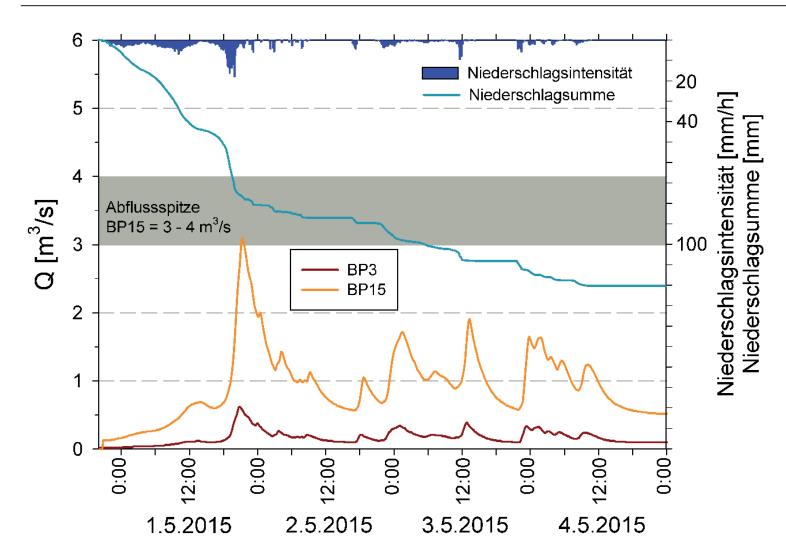

Einzugsgebiet

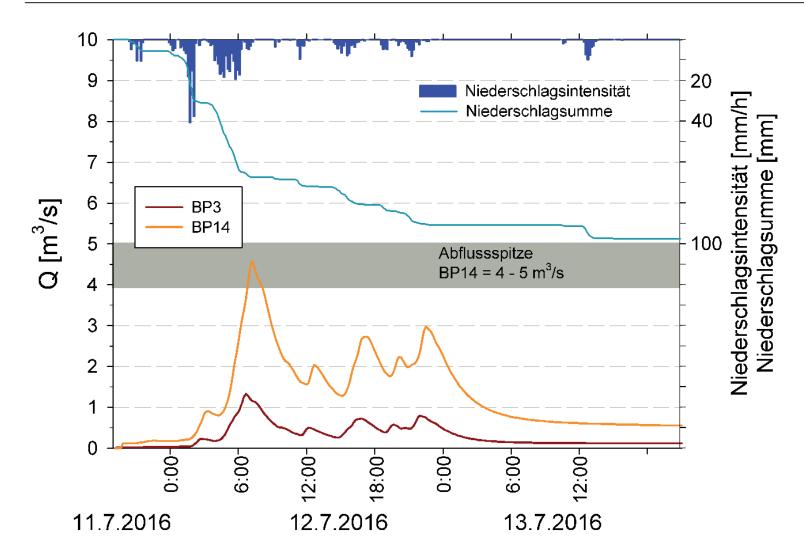

Anhang 5.1: Schematischer Aufbau des Niederschlags-Abfluss-Modells QArea. Zentrales Element ist die Abflussreaktionskurve, die für jede Teilfläche die Beziehung zwischen Niederschlagssumme und Abflusskoeffizient beschreibt.


Anhang 5.2: Die mit dem Modell QArea berechneten Abflüsse des Huebbachs an den Berechnungspunkten BP 5, BP 15 und BP 18 am 21.-22.8.2005 im Vergleich mit den abgeschätzten Abflussspitzen.


Anhang 5.3: Die mit dem Modell QArea berechneten Abflüsse des Huebbachs an den Berechnungspunkten BP 5 und BP 15 am 21.6.2007 im Vergleich mit den abgeschätzten Abflussspitzen.


Anhang 5.4: Die mit dem Modell QArea berechneten Abflüsse des Huebbachs an den Berechnungspunkten BP 5 und BP 15 am 8.-9..8.2007 im Vergleich mit den abgeschätzten Abflussspitzen.


Anhang 5.5: Die mit dem Modell QArea berechneten Abflüsse des Huebbachs an den Berechnungspunkten BP 5 und BP 15 am 4.7.2009 im Vergleich mit den abgeschätzten Abflussspitzen.


Anhang 5.6: Die mit dem Modell QArea berechneten Abflüsse des Huebbachs an den Berechnungspunkten BP 5 und BP 15 am 10.8.2009 im Vergleich mit den abgeschätzten Abflussspitzen.

Anhang 5.7: Die mit dem Modell QArea berechneten Abflüsse des Huebbachs an den Berechnungspunkten BP 5 und BP 15 am 29.7.2010 im Vergleich mit den abgeschätzten Abflussspitzen.

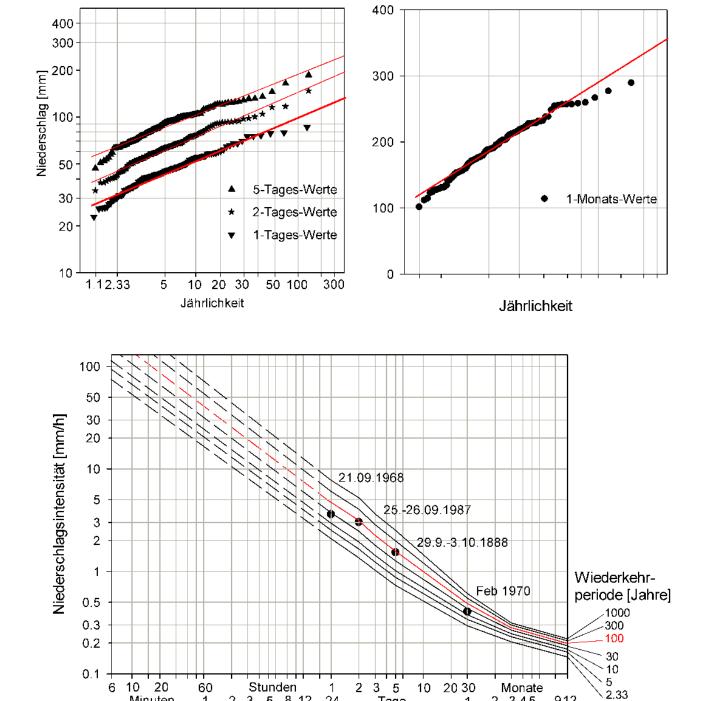
Anhang 5.8: Die mit dem Modell QArea berechneten Abflüsse des Huebbachs an den Berechnungspunkten BP 5 und BP 15 am 1.-3.5.2015 im Vergleich mit den abgeschätzten Abflussspitzen.

Anhang 5.9: Die mit dem Modell QArea berechneten Abflüsse des Huebbachs an den Berechnungspunkten BP 3 und BP 14 am 12.7.2016 im Vergleich mit den abgeschätzten Abflussspitzen.

2.33

2 3 4 5

912



Zofingen 1883 - 2012

Regen und Schnee berücksichtigt

- 1. Extremalverteilung: 1-Monats-Maxima
- 2. Extremalverteilung: 1-, 2-, 3- und 5-Tages-Maxima

Normalverteilung: 3-Monats- u. Jahres-Maxima

Anhang 6.1a: Die analog zu Zeller et al. (1978) erstellte Starkniederschlagsstatistik für die Station Zofingen (1883 - 2012).

Niederschlagsdauer

5 8 12

3

Minuten

Zofingen 1883 - 2012

Regen und Schnee berücksichtigt

- 1. Extremalverteilung: 1-Monats-Maxima
- 2. Extremalverteilung: 1-, 2- und 5-Tagesmaxima

Normalverteilung: 3-Monats- u. Jahres-Maxima

Die für die Diagramme verwendeten 10 grössten Niederschlagswerte

Ъ	1 - Tag		2 - Tage		5 - Tage		1 - Mon	at	3 - Monat	:e	1	Jahr
Rang	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]
1	21.09.1968	86	2526.09.1987	144	29.0903.10.1888	182	Feb 1970	290	Jun-Aug 2007	586	1965	1488
2	08.08.2007	79	0203.10.1888	114	23.0927.09.1987	161	Aug 1968	277	Jul-Sep 1968	584	1910	1483
3	26.09.1987	79	0708.11.1944	113	17.0121.01.1910	142	Jul 1930	267	Jun-Aug 1910	541	1922	1476
4	17.09.2006	76	0607.08.1978	102	05.0309.03.1896	132	Nov 1950	260	Mrz-Mai 2006	541	1981	1411
5	07.11.1944	76	1718.09.2006	98	07.1111.11.1944	129	Jul 1936	259	Feb-Apr 1970	538	1995	1400
6	02.10.1888	75	0708.08.2007	96	11.0115.01.1955	128	Nov 1972	257	Okt-Dez 1923	532	1939	1399
7	26.09.1991	70	2021.06.1958	95	20.0624.06.1973	125	Aug 1905	257	Jun-Aug 1914	522	1999	1377
8	17.05.1902	68	1920.01.1910	92	10.0214.02.1990	123	Aug 2007	257	Okt-Dez 1981	515	2001	1376
9	18.05.1994	68	2223.06.1973	92	22.1226.12.1995	122	Dez 2011	256	Sep-Nov 2002	509	1966	1364
10	17.09.1946	66	2021.09.1968	91	06.0810.08.1978	121	Aug 1956	255	Jul-Sep 1936	507	1952	1358

Interpolierte Niederschlagsintensitäten in mm/h für ausgewählte Jährlichkeiten und Niederschlagsdauern

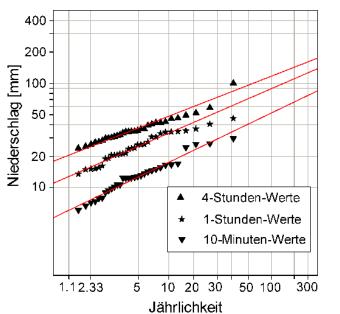
Niederschlagsdauer	0.5h	1h	2h	4h	6h	8h	12h	24h	2d	3d	5d	1mt	3mt	1yr
Jährlichkeit														
2.33	26	17	11	6.7	5.1	4.3	3.3	2.1	1.4	1.0	0.7	0.29	0.21	0.15
5	32	20	13	8.2	6.3	5.2	4.0	2.5	1.6	1.2	0.9	0.34	0.23	0.16
10	39	24	15	9.7	7.4	6.1	4.7	3.0	1.9	1.4	1.0	0.38	0.25	0.17
20	46	29	18	11.4	8.7	7.2	5.5	3.4	2.3	1.7	1.2	0.41	0.26	0.18
30	51	32	20	12.5	9.5	7.8	6.0	3.7	2.5	1.8	1.3	0.43	0.27	0.19
50	57	36	22	14.0	10.6	8.8	6.6	4.2	2.8	2.0	1.4	0.46	0.28	0.19
100	68	42	26	16.3	12.4	10.2	7.7	4.8	3.2	2.3	1.6	0.49	0.29	0.20
200	80	49	31	19.0	14.4	11.8	8.9	5.6	3.7	2.6	1.8	0.53	0.29	0.21
300	88	54	34	20.8	15.7	12.9	9.8	6.0	4.0	2.9	2.0	0.55	0.30	0.21
500	99	61	38	23.3	17.6	14.4	10.9	6.7	4.5	3.2	2.2	0.57	0.31	0.21
1000	117	72	44	27.2	20.5	16.7	12.6	7.8	5.2	3.6	2.5	0.61	0.31	0.22

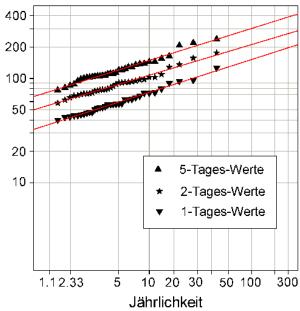
Bemerkungen

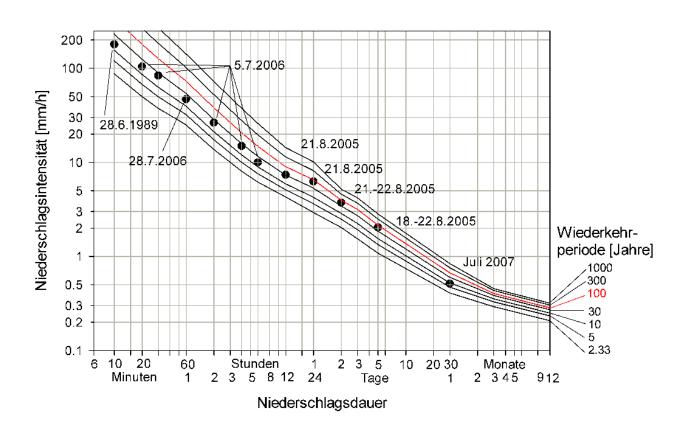
Stations - Koordinaten 638040 / 238020, Stationshöhe: 435 m ü M

Datenlücke 1.1.1982 - 31.1.1991 durch Werte der Station Oftringen ersetzt

Datenlücke 1.9.2003 - 31.1.2004




Napf 1978 - 2011


Regen und Schnee berücksichtigt

- 1. Extremalverteilung: Maxima > 1 Tag
- 2. Extremalverteilung: Maxima < 1 Tag

Normalverteilung: 3-Monats- u. Jahres-Maxima

Anhang 6.2a: Die analog zu Zeller et al. (1978) erstellte Starkniederschlagsstatistik für die Station Napf (1978 - 2011).

Napf 1978 - 2011

Regen und Schnee berücksichtigt

1. Extremalverteilung: Maxima > 1 Tag

2. Extremalverteilung: Maxima < 1 Tag

Normalverteilung: 3-Monats- u. Jahres-Maxima

Die für die Diagramme verwendeten 10 grössten Niederschlagswerte (Tageswerte)

Б	1 - Tag		2 - Tage		5 - Tage		1 - Mon	at	3 - M	lonate		1 - 、	Jahr
Rang	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]	Datum		N nm]	Datum	N [mm]
1	21.08.2005	127	2122.08.2005	178	18.0822.08.2005	242	Jul 2007	366	Mai-Jul 2	2007 9	29	1999	2175
2	14.02.1990	96	1314.02.1990	158	10.0514.05.1999	223	Aug 2005	366	Apr-Jun 1	999 7	796	1995	2130
3	17.09.2006	94	1718.09.2006	137	12.0216.02.1990	210	Mai 1999	355	Jul-Sep 2	2004 7	724	2002	1968
4	18.05.1994	91	1112.05.1999	129	17.0521.05.1994	166	Aug 2006	337	Mai-Jul 2	2010 6	90	2001	1902
5	07.08.1978	80	0708.08.2007	110	13.0717.07.2002	157	Jul 2000	302	Mai-Jul 1	993 6	888	2007	1888
6	25.12.1995	73	0910.08.1984	104	31.0503.06.2004	147	Jun 2001	300	Jul-Sep 2	2006	887	1994	1842
7	08.08.2007	73	1819.05.1994	104	22.1226.12.1995	146	Mai 1994	292	Jul-Sep 2	2005	371	2006	1793
8	26.05.2009	72	0102.06.2004	99	23.0727.07.1982	141	Feb 1990	291	Mrz-Mai 2	2006	666	1990	1780
9	12.05.1999	68	2526.12.1995	98	15.0919.09.2006	140	Mai 2010	290	Jul-Sep 1	995 6	4 3	1993	1757
10	13.07.2008	66	2324.03.2004	97	06.0810.08.2007	137	Aug 1995	281	Apr-Jun 2	2001 6	4 2	1992	1669

Die für die Diagramme verwendeten 10 grössten Niederschlagswerte (10-Minuten-Werte)

þ	10 Minu	ten	30 Minute	en	1 Stunde	,	2 Stund	len	4 Stunde	n	12 Stund	en
Rang	Datum	N [mm]										
1	28.06.1989	30	05.07.2006	41	28.07.2006	46	05.07.2006	52	05.07.2006	59	21.08.2005	88
2	26.05.2009	27	26.05.2009	35	26.05.2009	41	11.06.1988	46	11.06.1988	53	17.09.2006	79
3	15.06.1992	26	27.06.1989	32	10.06.1989	37	29.06.2008	42	15.07.2002	50	18.05.1994	75
4	05.07.2006	24	18.05.1993	32	23.07.1982	35	26.05.2009	41	29.06.2008	47	26.05.2009	70
5	20.08.2003	17	23.07.1982	29	11.07.1981	35	10.06.1989	39	26.05.2009	46	13.02.1990	69
6	08.02.1988	17	10.08.1996	28	18.05.1993	35	23.07.1982	39	21.08.2005	43	27.06.1989	59
7	04.07.2005	17	15.06.1992	26	11.06.1988	34	11.07.1981	39	23.07.1982	43	08.08.2007	58
8	07.06.1982	16	11.07.1981	25	19.02.1999	33	18.05.1993	35	26.05.1992	43	11.05.1999	57
9	21.08.2000	15	13.07.2011	25	10.08.1996	31	10.08.1996	35	10.06.1989	41	09.08.1984	56
10	31.07.2002	15	29.06.2008	24	29.06.2008	31	15.07.2002	35	11.07.1981	40	22.08.1998	54

Napf

1978 - 2011

Regen und Schnee berücksichtigt

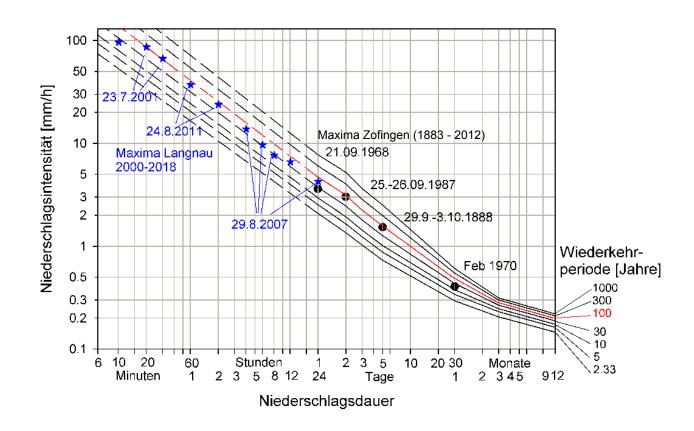
1. Extremalverteilung: Maxima > 1 Tag

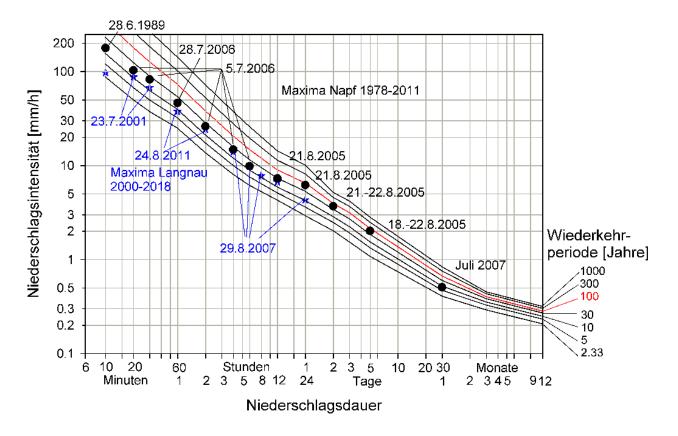
2. Extremalverteilung: Maxima < 1 Tag

Normalverteilung: 3-Monats- u. Jahres-Maxima

Niederschlagsintensitäten in mm/h für ausgewählte Jährlichkeiten und Niederschlagsdauern Werte < 1 Tag ermittelt aus 10 - Minuten - Werten (1981 - 2011) Werte > 1 Tag ermittelt aus Tageswerten (1978 - 2011)

Niederschlagsdauer	10min	20min	0.5h	1 h	2h	4h	6h	12h	24h	2d	5d	1mt	3mt	1yr
Jährlichkeit														
2.33	87	50	37	25	14	8	6.2	4.3	2.9	2.0	1.1	0.41	0.29	0.21
5	120	67	50	32	17	10	7.6	5.1	3.6	2.5	1.3	0.47	0.33	0.23
10	156	86	63	40	21	12	8.9	5.9	4.2	2.9	1.5	0.52	0.35	0.25
20	200	109	78	48	26	14	10.5	6.8	4.9	3.2	1.7	0.57	0.37	0.26
30	230	124	89	54	29	16	11.5	7.3	5.3	3.4	1.9	0.60	0.38	0.27
50	275	147	105	62	33	18	13.0	8.1	5.9	3.7	2.0	0.64	0.40	0.28
100	350	185	130	75	39	21	15.2	9.2	6.7	4.0	2.2	0.68	0.41	0.29
200	446	233	162	91	47	25	17.9	10.5	7.6	4.4	2.4	0.73	0.43	0.30
300	513	266	184	102	53	28	19.6	11.4	8.1	4.6	2.5	0.76	0.43	0.30
500	612	315	216	117	60	32	22.1	12.5	8.9	4.8	2.6	0.79	0.44	0.31
1000	778	396	269	142	72	38	25.9	14.3	10.1	5.2	2.8	0.84	0.46	0.32


<u>Bemerkungen</u>


Tages werte:

- Messbeginn 01.01.1978
- fehlende Daten in folgenden Zeiträumen: 20.03.2007 23.03.2007

Hochaufgelöste Werte:

- Messbeginn 01.01.1981

Anhang 6.3: Vergleich der grössten Niederschlagsereignisse an der Station Langnau (2000 - 2018) mit den Statistiken der Stationen Zofingen (oben) und Napf (unten).