

Massgebende Hochwasserabflüsse und Beckenberechnungen an der Ron bei Ebikon (LU)

Die Hochwasser führende Ron mit überflutetem Landwirtschaftsland bei Ebikon am 8.8.2007, Foto: vif

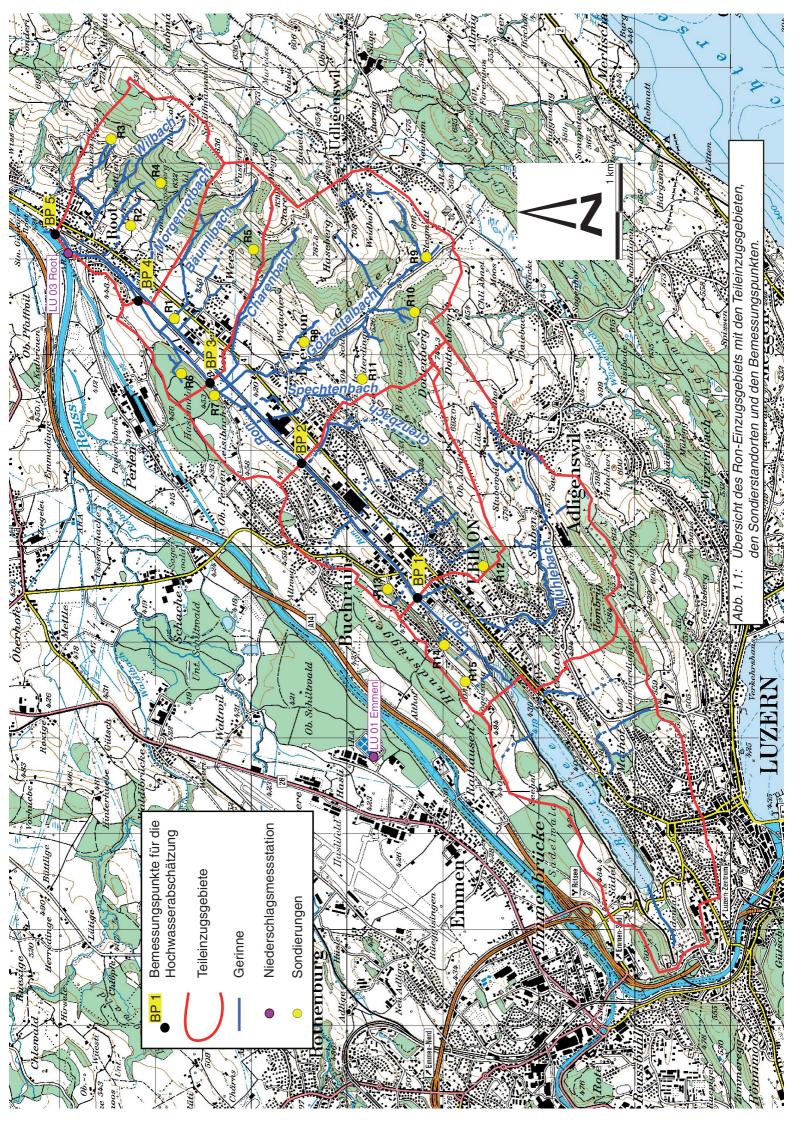
Auftraggeber: Verkehr und Infrastruktur (vif) Kanton Luzern

Bericht: 11/149 Reinach, August 2011

Inhaltsverzeichnis

1	Einlei	itung	2
	1.1 F	Problemstellung	2
	1.2 V	Vorgehen	4
	1.3 (Gebietskennwerte	4
2	Verwe	endete Daten und Unterlagen	5
3	Histo	rische Hochwasser	6
	3.1 F	Einleitung	6
	3.2 I	Die historischen Hochwasser an der Ron	6
	3.3 \$	Schlussfolgerungen	8
4	Beurt	eilung der Abflussreaktion des Gebiets	9
	4.1 F	Einleitung	9
	4.2	Geologie und Hydrogeologie	9
	4.3 H	3öden	9
	4.4 A	Abflussprozesse und Abflusstypen auf natürlichen (nicht überbauten) Flächen	10
	4.5 A	Abflussreaktion der Siedlungsgebiete	13
	4.6 A	Abflussreaktionskurven	13
5	Abflu	ssberechnungen	15
	5.1 E	Einleitung	15
	5.2	Grundlagen und Aufbau des Modells QArea	15
	5.3 E	Eichung des Modells	17
	5.4 N	Niederschlag-Szenarien	17
	5.5 A	Abflussberechnungen	19
6	Hoch	wasserabflüsse definierter Jährlichkeit	20
	6.1 E	Einleitung	20
	6.2 F	Ron in Ebikon zwischen den BP 1 und BP 2	20
	6.3 H	Hochwasserabflüsse	22
	6.4 V	Vergleich mit früheren Untersuchungen.	23
7	Hoch	wasserrückhalt als Schutz für Root.	24
8	Anhai	ng	25

1 Einleitung


1.1 Problemstellung

Das Einzugsgebiet (EZG) der Ron besteht aus einem schmalen, lang gestreckten Tal mit einem wenig geneigten Talboden (ca. 420 m ü. M., Abb. 1.1). Die südlich anschliessenden Steilhänge sind kurz und reichen bis auf über 800 m ü. M. Der Mühlebach und der Götzentalbach sind die grössten Seitenbäche, die sich in den Hügelzug eingeschnitten haben. Viele kleinere Bäche fliessen der Ron zu. Im Norden begrenzt ein kleiner Hügelzug das EZG. Das Rontal gehört zur Agglomeration der Stadt Luzern und weist viele befestigte Siedlungsflächen auf. Wie solche Flächen auf Starkregen reagieren, ist schwierig einzuschätzen. So zeigten beispielsweise Hochwasseruntersuchungen in stark bebauten Gebieten (Naef et al., 2004), dass die Angaben zum abfliessenden Niederschlag nicht ohne weiteres aus dem Generellen Entwässerungsplanes GEP übernommen werden können.

Abgesehen vom Talboden bestehen die meisten natürlichen Flächen aus stark geneigten, steilen Hängen. Die künstliche Beregnung ähnlicher Hänge mit hoher Intensität zeigte, dass die Abflussreaktion je nach Aufbau des Bodens recht unterschiedlich ausfallen kann (Scherrer, 1997). Im Extremfall kann bis 90% des Niederschlags sofort abfliessen oder über Stunden kaum wesentlicher Abfluss entstehen. Eine realistische Hochwasserabschätzung an der Ron erfordert also auf natürlichen Flächen und stark versiegelten Flächen eine prozessnahe Beurteilung der Abflussreaktion auf Starkregen.

In der Vergangenheit sind am Mühlebach verschiedentlich Überschwemmungen aufgetreten (VAW, 1992). An der Ron traten im August 2005 und 2007 Überflutungen auf, im Unterlauf kann dies durch Rückstau der hoch gehenden Reuss erfolgen. Für die Auslegung von Hochwasserschutzmassnahmen entlang der Ron sind aktualisierte Hochwasserabflüsse unterschiedlicher Jährlichkeit (HQ₃₀, HQ₁₀₀, HQ₃₀₀) notwendig. An der Ron sind jedoch keine Abflussmessungen vorhanden. Daher müssen die massgebenden Abflüsse mit einer detaillierten hydrologischen Untersuchung hergeleitet werden. Es interessieren sowohl die Abflussspitzen, als auch Abflussvolumen zur Beurteilung eines geplanten Hochwasserrückhaltebeckens (HWRB) beim Berechnungspunkt (BP) 4. Die seit Fertigstellung der VAW-Studie (1992) erfolgten Hochwasser und die neueren Erkenntnisse über die Abflussbildung müssen berücksichtigt werden. Dabei stellen sich folgende Fragen:

- Wie entstehen grosse Hochwasser an der Ron?
- Wie wirken Siedlungsflächen und natürlichen Flächen bei Starkregen zusammen?
- Wie ordnen sich die Hochwasser 2005 und 2007 in die Hochwassergeschichte der Ron ein?

1.2 Vorgehen

Der vorliegende Bericht stellt die Resultate der durchgeführten Untersuchungen dar. Im Kapitel 2 sind die verwendeten Daten und Unterlagen zusammengestellt. Kapitel 3 zeigt die aus den Erkundungen der historischen Hochwasser gewonnenen Erkenntnisse. In Kapitel 4 wird das EZG nach seiner Abflussbereitschaft beurteilt. Darauf aufbauend erfolgen die Berechnungen mit einem Niederschlag-Abfluss-Modell (Kap. 5). Im Kapitel 6 werden die Hochwasserabflüsse bestimmter Jährlichkeit hergeleitet, indem sämtliche Resultate in einem Frequenzdiagramm zusammengefügt werden. Kapitel 7 befasst sich mit den für den Hochwasserschutz von Root notwendigen Beckenvolumen.

1.3 Gebietskennwerte

Diese Kennwerte beziehen sich auf die in Abbildung 1.1 aufgeführten Teileinzugsgebiete. Der Ausfluss des Rotsees ist reguliert und spielt deshalb bei der Bestimmung der Hochwasserabflüsse eine untergeordnete Rolle (vgl. Kap. 5.2).

Tab. 1.1: Gebietskennwerte

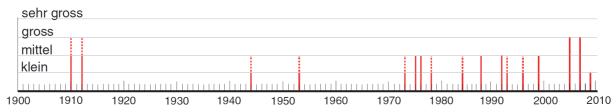
Höchster Punkt im Einzugsgebiet (EZG) (Rooterberg)	840 m ü. M.
Tiefster Punkt im EZG (Mündung in die Reuss)	411 m ü. M.
Ausfluss Rotsee	4.5 km ²
EZG oberhalb BP 1: Ron nach Einmündung Mühlebach (ohne Rotsee)	4.1 km ²
EZG oberhalb BP 2: Ron nach Einmündung Grenzbach (ohne Rotsee)	7.6 km ²
EZG oberhalb BP 3: Ron nach Einmündung Götzentalbach (ohne Rotsee)	13.0 km ²
EZG oberhalb BP 4: Ron nach Einmündung Bäumlibach (ohne Rotsee)	15.0 km²
EZG oberhalb BP 5: Ron vor Mündung in Reuss (ohne Rotsee)	17.4 km²

2 Verwendete Daten und Unterlagen

- AF-Colenco AG / Keller + Lorenz AG (2010): Gemeinden Buchrain, Dierikon, Ebikon, Root: Gefahrenkarte Rontal, Technischer Bericht, Februar 2010.
- creato (1999): Untersuchung der Reuss sowie der Zuflüsse Kleine Emme und Lorze in den Jahren 1994 -1998, Zusammenstellung der Untersuchungen der Kantone Aargau, Zug und Luzern; creato - Netzwerk für kreative Umweltplanung, Ennetbaden, Juni 1999.
- IHW-ETH Zürich, Scherrer AG (2002): Der Einfluss der Siedlungsentwicklung auf die extremen Hochwasser der Glatt (ZH), Bericht 01/24, Dez. 2002.
- Jäckli H., Kempf Th. (1972): Hydrogeologische Karte der Schweiz 1: 100'000. Blatt Bözberg Beromünster. Hrsg. Schweiz. Geotechnische Kommission.
- Kopp J. (1945): Geologischer Atlas der Schweiz, Atlasblatt 18 Hochdorf im Massstab 1 : 25'000 mit Erläuterungen. Hrsg. Geologische Kommission.
- Kopp J. (1962): Geologischer Atlas der Schweiz, Atlasblatt 28 Luzern im Massstab 1: 25'000 mit Erläuterungen. Hrsg. Schweiz. Geologische Kommission.
- Lanz-Stauffer H. und C. Rommel (1936): Elementarschäden und Versicherung. Studie des Rückversicherungsverbandes kantonal-schweizerischer Feuerversicherungsanstalten zur Förderung der Elementarschadenversicherung, Band 2. Selbstverlag des Rückversicherungsverbandes. Bern.
- Luzerner Tagblatt, diverse Ausgaben.
- Naef F., Scherrer S.; Zurbrügg C. (1999): Grosse Hochwasser unterschiedliche Reaktion von Einzugsgebieten auf Starkregen. Hydrologischer Atlas der Schweiz, Blatt 5.7.
- Naef F., Scherrer S., und Frauchiger R. (2004): Wie beeinflusst die Siedlungsentwicklung von Zürich-Nord die Hochwasser der Glatt? Wasser Energie Luft, 96, 11/12, 331-338.
- Planergemeinschaft HWS Rontal (2008): Gesamtkonzept Rontal Hochwasserschutz Reuss-Rotsee; Vorstudie. Februar 2008.
- Planergemeinschaft HWS Rontal (2009): Gesamtkonzept Rontal, Reuss-Rotsee, Hochwasserschutz und Revitalisierung; Vorprojekt: Technischer Bericht, Übersicht 1:10'000, Situation 1:1'000, LP 1:1'000/100, QP 1:100; Federführung: AF-Colenco AG.
- Orientierungslaufvereinigung Luzern (2007): Orientierungslaufkarte Hasliwald, Massstab 1 : 10'000.
- Orientierungslaufvereinigung Luzern (2007): Orientierungslaufkarte Sädelwald-Hundsrüggen, Massstab 1 : 10'000.
- Peyer K. (1983): Bodenkarte Hochdorf, Blatt 1130, Massstab 1: 25'000, mit Erläuterungen. Hrsg. Eidg. Forschungsanstalt für Landwirtschaftlichen Pflanzenbau, Reckenholz.
- Peyer K. (1988): Bodenkarte Luzern, Blatt 1150, Massstab 1: 25'000, mit Erläuterungen. Hrsg. Eidg. Forschungsanstalt für Landwirtschaftlichen Pflanzenbau, Reckenholz.
- Rontaler Gemeinden (2011): Unser Rontal, Geologie; gemeinsame Homepage der Rotaler Gemeinden. http://www.unserrontal.ch/geologie.htm (aufgerufen am 19.7.2011).
- Röthlisberger G. (1991): Chronik der Unwetterschäden in der Schweiz. Berichte WSL, Berichtnummer 330.
- Scherrer AG (2004): Bestimmungsschlüssel zur Identifikation von hochwasserrelevanten Flächen. Im Auftrag des Landesamtes für Wasserwirtschaft Rheinland-Pfalz.
- Scherrer AG (2009): Massgebende Hochwasserabflüsse am Mattenbach in Winterthur. Auftraggeber: Tiefbauamt der Stadt Winterthur, Siedlungsentwässerung. Bericht: 08/103. Februar 2009.
- Scherrer S. (1997): Abflussbildung bei Starkniederschlägen Identifikation von Abflussprozessen mittels künstlicher Niederschläge. In: Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Nr. 147.
- U.S. Army Corps of Engineers (2010): Hydrologic Engineering Center, River Analysis System (HEC-RAS), Version 4.1.0.
- Vaterland, diverse Ausgaben.
- VAW, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich (1992): Abschätzung des 100jährlichen Hochwassers der Ron unter Berücksichtigung der Retention im Ronkanal.
- Zeller J., Geiger H., Röthlisberger G. (1978): Starkniederschläge des schweizerischen Alpen- und Alpenrandgebietes, Bd. 3, Hrsg. von der Eidg. Anstalt für das forstliche Versuchswesen.
- WSL, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft (2011): Ereignisdokumentation der Hochwasserschäden in den Gemeinden im Einzugsgebiet der Ron (1972-2010).

3 Historische Hochwasser

3.1 Einleitung


Der Abfluss der Ron wird nicht gemessen. Durch die Untersuchung historischer Hochwasser lassen sich Hinweise über die Häufigkeit, Grösse und Verlauf von Hochwasserereignissen zusammentragen. Mit Informationen aus Zeitungen, Archiven und Fotos konnte ein Beobachtungszeitraum von 100 Jahren erschlossen werden.

3.2 Die historischen Hochwasser an der Ron

Im Anhang 1 sind sämtliche Informationen über historische Hochwasser detailliert zusammengestellt. Abbildung 3.1 zeigt einen Überblick über das Hochwassergeschehen der letzten 100 Jahre. Die Grösse der einzelnen Hochwasser wurde gemäss den Kriterien in der Tabelle 3.1 charakterisiert. Neben den Abflussschätzungen einzelner grösserer Hochwasser aufgrund detaillierter Angaben wurden sämtliche zusammengetragenen Informationen (Anhang 1) zu den Hochwassern im EZG betrachtet und unter Berücksichtigung der im Laufe der Zeit veränderten Abflussverhältnisse gewertet.

Es existieren verschiedene Niederschlag-Tagessammler in der Region seit 1880. Sie erlauben einen Vergleich der lang andauernden Starkregenereignisse, die Intensität und räumliche Verteilung von Gewittern erfassen sie hingegen nicht. Im Anhang 2 sind die Tagesniederschläge bei den grossen Hochwasserereignissen seit 1910 aufgeführt. Sie bilden ein weiteres, allerdings untergeordnetes Kriterium für die Einordnung von Hochwassern. Zudem ergeben sich aus der Grösse der Niederschläge und den Angaben über historische Hochwasser wesentliche Informationen, wie das Gebiet auf Starkregen reagiert (Kap. 4).

Abb. 3.1 Historische Hochwasser an der Ron seit 1910. Charakterisierung der Grösse einzelner Hochwasser anhand der untersuchten Quellen.

Tab. 3.1 Einordnungskriterien zur Wertung historischer Hochwasser an der Ron.

	Ron in Ebikon	Gebiets-Nieder-	Gebiets-Nieder-	Beschreibung der Überschwemmungen
	(BP 1+2)	schlag 24h	schlag 48h	(Rückstau durch Reuss ausgenommen)
nicht	< 6 m ³ /s	< 40 mm	< 60 mm	keine Überschwemmungen entlang der
klassiert				Ron
klein	6 – 9 m ³ /s	40 – 60 mm	60 – 80 mm	keine Überschwemmungen entlang der
				Ron
mittel	9 – 12 m ³ /s	60 – 80 mm	80 – 110 mm	kleine, leichte Überschwemmungen ent-
				lang der Ron
gross	12 – 15 m ³ /s	80 – 110 mm	110 – 140 mm	lokale Überschwemmungen entlang der
				Ron, Schäden
sehr	> 15 m ³ /s	> 110 mm	> 140 mm	grosse Überschwemmungen der Ron,
gross				grosse Schäden

Nachfolgend werden die als mittel bis gross eingestuften Hochwasser an der Ron beschrieben. Das älteste dokumentierte Hochwasser der Ron ereignete sich am **14./15.6.1910**. Starker Dauerregen mit einer Niederschlagssumme von 110 - 130 mm in drei Tagen liess die Ron unterhalb von Ebikon ausufern. Die hochgehende Reuss verursachte einen Rückstau und eine Überschwemmung der Häuser im Unterdorf von Root. Das gleiche Schadensbild wiederholte sich am **13.6.1912** nach intensiven Niederschlägen von 80 - 100 mm in einem Tag.

Dauerregen von 105 - 115 mm in drei Tagen liessen die Bäche am **23.8.1975** entlang der Ron, namentlich der Mühle- und der Götzentalbach ausbrechen. Überschwemmungen entlang der Ron sind keine dokumentiert. Am **26.7.1976** überschwemmte der hochgehende Mühlebach in Ebikon die Strasse (105 - 133 mm in drei Tagen).

Ein Gewitter liess am **16./17.6.1988** den Mühlebach beim Durchlass unter der SBB-Linie ausufern. In der Folge füllte sich an einigen Stellen das Gerinne der Ron ohne auszuufern. Das gleiche Schadensbild wiederholte sich am **21.8.1992** ebenfalls nach einem Gewitter. In VAW (1992) wurde am Mühlebach eine Abflussspitze von 7 m³/s und an der Ron bei Root von 15 - 20 m³/s abgeschätzt. Da im gesamten EZG der Ron die Seitenbäche Hochwasser führten, erreichte die Ron weiter oben bei Ebikon vermutlich eine Abflussspitze von 10 - 12 m³/s.

Nach Dauerregen (107 - 115 mm in drei Tagen) uferten am **13.5.1999** der Bäumli-, der Morgenrot- und der Wilbach aus und übersarten die Hauptstrasse in Root. An der Ron sind keine Probleme im Zusammenhang mit diesem Hochwasser dokumentiert.

In Folge extremer Niederschläge (Gebietsniederschlag: 150 mm in drei Tagen; Anhang 2 und Anhang 3.1) uferte die Ron am **21./22.8.2005** zwischen Ebikon und Root an zahlreichen Stellen aus. Durch den Rückstau der Reuss wurden weite Teile des Unterdorfs von Root überschwemmt. Aufgrund von Fotos konnte die Abflussspitze der Ron an verschiedenen Stellen in Ebikon (zwischen BP 1 und BP 2) auf 10 - 15 m³/s abgeschätzt werden¹.

Nur zwei Jahre später kam es an der Ron am **8.8.2007** zu einem weiteren grossen Hochwasser. Anhaltende Niederschläge (Gebietsniederschlag: 135 mm in drei Tagen; Anhang 2 und Anhang 3.2) liessen den Spechten-, den Götzental- und den Charenbach über die Ufer treten. Auch die Ron uferte in Ebikon und Buchrain aus. Aufgrund von Fotos konnte die Abflussspitze der Ron an verschiedenen Stellen in Ebikon (zwischen BP 1 und BP 2) auf 10 - 15 m³/s abgeschätzt werden¹.

Das "kleine" Hochwasser vom **8.8.2009** wird hier noch angefügt, da es sich als weiteres Ereignis zur Verifikation des Niederschlagabflussmodells (NAM) eignet. Innerhalb eines Tages fiel ein Gebietsniederschlag von 50 mm (Anhang 2 und Anhang 3.3). Aufgrund von Fotos konnte die Abflussspitze der Ron an verschiedenen Stellen in Ebikon (zwischen BP 1 und BP 2) auf 6 - 7 m³/s abgeschätzt werden¹.

¹ Basierend auf der Gerinnegeometrie aus Planergemeinschaft HWS Rontal (2009) wurde mit Hilfe des hydraulischen 1-D-Programms HEC-RAS (U.S. Army Corps of Engineers, 2010) die beobachteten Wasser- und Energielinien mit Rauhigkeiten von k_{str} 25 - 30 abgeschätzt.

3.3 Schlussfolgerungen

- Durch die Recherchen über historische Hochwasser eröffnet sich ein Beobachtungszeitraum von 100 Jahren.
- Grosse Hochwasser an der Ron wurden in der Vergangenheit durch Dauerregen verursacht. Als "mittel" eingestufte Hochwasser an der Ron wurden aber auch von Gewittern verursacht.
- Die Hochwasser vom 21./22.8.2005 und 8.8.2007 sind die grössten seit den Hochwassern vom 14./15.6.1910 und 13.6.1912. In Ebikon (zwischen BP 1 und BP 2) wurden für beide eine Abflussspitze von 10 15 m³/s abgeschätzt.

4 Beurteilung der Abflussreaktion des Gebiets

4.1 Einleitung

Wie viel Wasser bei Starkregen in den Boden eindringt und vorübergehend zurückgehalten wird und wie viel Wasser sofort abfliesst, hängt von der Gebietsausstattung ab (Geomorphologie, Geologie, Böden, Vegetation, Landnutzung). Welche Abflussprozesse bei Starkregen ablaufen, wurde detailliert mittels Beregnungsversuchen untersucht (Scherrer, 1997; Naef et al., 1999). Darauf aufbauend wurde ein Bestimmungsschlüssel entwickelt, der die Identifikation hochwasserrelevanter Flächen erlaubt (Scherrer AG, 2004). Die Beurteilung des EZG der Ron nach der Abflussbereitschaft lehnt sich eng an diesen Bestimmungsschlüssel an. Ein grosser Teil des Ron-EZG ist überbaut und wird als Wohn- oder Gewerbegebiet genutzt. Die Beurteilung der Abflussbereitschaft von bebauten Gebieten erfolgt nach anderen Kriterien.

4.2 Geologie und Hydrogeologie

Die geologische Grundlagen stammen aus Kopp (1945, 1962), Rontaler Gemeinden (2011) und die hydrogeologischen Angaben aus Jäckli und Kempf (1972).

Das langgestreckte Rontal dürfte von Gletschern ausgehobelt und wahrscheinlich durch die früher durchlaufende Reuss weiter eingetieft worden sein. Der Rotsee entstand wahrscheinlich, indem Schotterablagerungen den Zugang der Reuss zum Rontal versperrten und Ablagerungen des Mühlebachs den Ausfluss des Rotsees behinderten. Das Tal bildet den Übergangsbereich von der subalpinen Molasse im Süden zur mittelländischen Molasse im Norden. Tektonisch handelt es sich bei den Steilhängen des Dietschibergs, Dottenbergs und des Rooterbergs um eine Antiklinale (Würzenbach-Antiklinale), ein geschlossenes Gewölbe ist aber heute nicht mehr sichtbar. Die Steilhänge des Rontales bilden den Nordschenkel der Antiklinale, wo die Schichten im Oberhang steil (sichtbar in verschiedenen Tobeln des Rooterbergs), im Unterhang flacher gegen Norden einfallen.

Der Untergrund des EZG wird im wesentlichen von der Oberen Meeresmolasse gebildet. In den steilen Hängen ist vor allem (Luzerner) Sandstein zu finden. Der langgestreckte Hügelzug des Hundsrüggen-Hasliwalds besteht ebenfalls aus der Oberen Meeresmolasse und wird vor allem von Nagelfluhschichten gebildet, die kleinflächig auch von Moräne überlagert sind (Hasliwald). Der flache Talboden des Rontals wird aus Alluvionen verschiedenster Zusammensetzung gebildet, wo auch ein Grundwasserkörper liegt. Hydrogeologisch wird den weit verbreiteten Sandsteinen aber auch dem Nagelfluh eine mittelgrosse Durchlässigkeit zugeordnet.

4.3 Böden

Für einen grossen Teil des Untersuchungsgebiets liegen Bodenkarten im Massstab 1 : 25'000 vor (Peyer 1983 und 1988). Dies gibt einen guten Überblick der Böden im unbebauten EZG. Die Böden werden grösstenteils als Braunerden beschrieben, in Steilhängen flach- bis mittelgründig, in weniger geneigten Flächen mittel- bis tiefgründig. Meist sind sie normal durchlässig, nur vereinzelt sind etwas von Stau- oder Hangwasser beeinflusste Böden (z.B. Hang bei Dierikon) kartiert. Im Götzental, in Muldenlagen und im flachen Rontal wurden Gleyböden (Buntgleye), Braunerde-Gleye oder Pseudogleye ausgewiesen.

Um die Angaben der Bodenkarte zu ergänzen, zu überprüfen und hydrologisch zu interpretie-

ren, wurden an 15 Standorten zusätzliche Bodensondierungen mit der Schlagsonde nach Pürckhauer (Kerndurchmesser 2 cm) ausgeführt. Die Lage der Sondierungen sind in Abbildung 1.1 und die Profile im Anhang 4.1 dargestellt und im Anhang 4.3 kurz beschrieben. Diese Profile wurden nach Infiltration, Speichervermögen und zu erwartendem Abflussprozess beurteilt und bilden die Grundlage für die Kartierung des Gebiets nach der Abflussbereitschaft.

Aufgrund der Bodenkarte, der geologischen und hydrogeologischen Karte, der Sondierungen und der Orientierungslaufkarten (OLV Luzern, 2007) ergab sich ein umfassendes Bild der räumlichen Verteilung und Eigenschaften der Böden im EZG. Selbst in steilen Hängen (R4, 5, 12 und 15) sind die Böden mittelgründig und gehen fliessend in das verwitterte Gestein über (Sandstein, Nagelfluh). Nassböden (Braunerde-Gleye) oder Stau- oder Hangwasser beeinflusste Böden (Pseudogleye) wurden nur in Muldenlagen oder im Talboden angetroffen (R1, R3, R9). Pseudovergleyte Braunerden (R11) stellen eine Besonderheit dar. Die Körnung der Böden ist durchwegs tonarm (siltig-sandig bis siltig-lehmig oder sandig-lehmig). Dies bedeutet, dass die Böden im EZG der Ron abgesehen vom Talboden und von Muldenlagen durchlässig sind, gut drainieren und damit ein günstiges Infiltrations- und Speichervermögen haben.

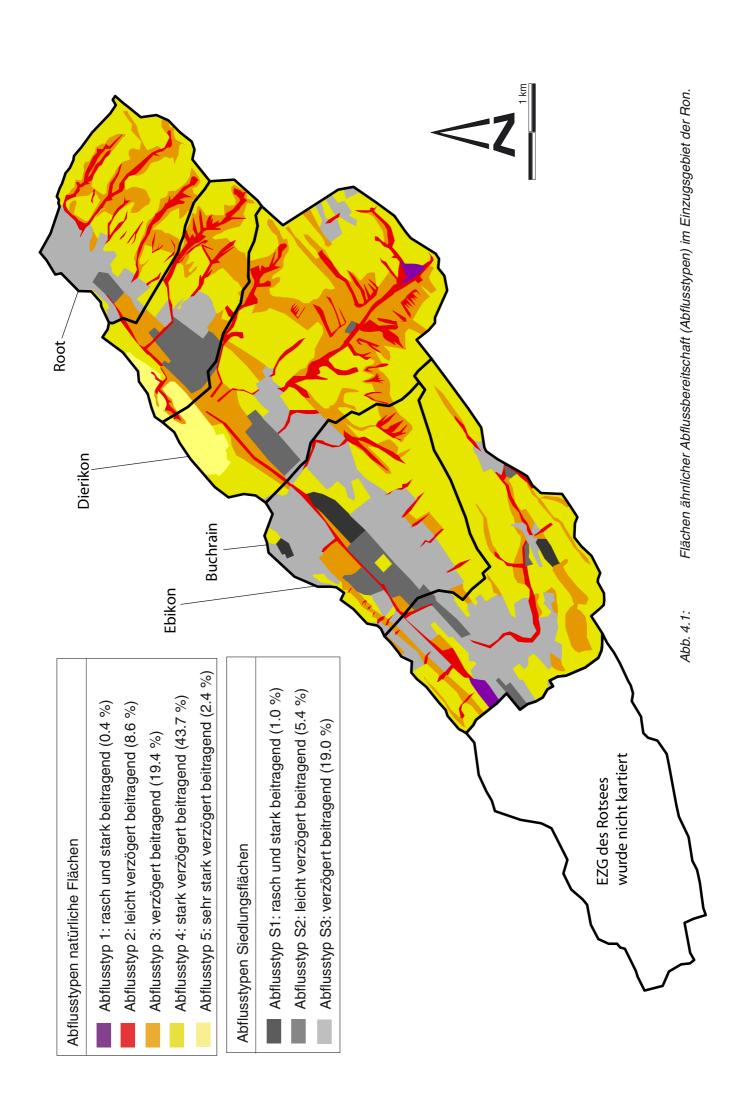
4.4 Abflussprozesse und Abflusstypen auf natürlichen (nicht überbauten) Flächen

Die Beurteilung der natürlichen Flächen stützt sich im Wesentlichen auf die Bodenkarten, der geologischen und hydrogeologischen Karte, der OL-Karten und die Bodensondierungen. Gemäss den in Tabelle 4.1 aufgeführten Kriterien wurden Prozesse, welche einen ähnlich starken Beitrag zur Entstehung von Hochwasser leisten, kartiert und zu sog. Abflusstypen zusammengefasst (Abb. 4.1). Diese dienen als Grundlage für die Abflussberechnungen mit dem Niederschlag-Abfluss-Modell QArea.

Nassflächen werden rasch gesättigt (Prozess: Oberflächenabfluss aufgrund rasch sich sättigender Flächen, SOF1) und tragen wie undurchlässige Flächen (Oberflächenabfluss aufgrund Infiltrationshemmnissen, HOF1, 2) rasch zum Abfluss bei. Ihre Flächenausdehnung ist allerdings im Gebiet sehr gering (Abflusstyp 1: 0.4 % Flächenanteil).

Feuchte Mulden und die unteren Teile langer Hänge weisen in Bachnähe ein geringes Feuchtedefizit auf und sättigen sich bei Starkregen (verzögerter Oberflächenabfluss aufgrund der Sättigung: SOF2). Bewaldete Steilhänge ermöglichen raschen Abfluss im Boden (SSF1). Diese Flächen tragen leicht verzögert zur Entstehung von Hochwasser bei (Abflusstyp 2, 8.6 %).

Mässig tiefgründige Böden mit mässiger bis guter Durchlässigkeit werden gesättigt und es bildet sich verzögerter Oberflächenabfluss (SOF2 - 3). Auf flachgründigen Böden an bewaldeten Hängen, in stau- oder hangwasserbeeinflussten Böden entsteht verzögerter Abfluss im Boden (SSF2). Gesättigte oder nahezu gesättigte Böden in flacher Lage reagieren mangels Geländeneigung nur langsam. Sie alle gehören dem Abflusstyp 3 an (19.4 %).


Ein Grossteil der Böden im EZG der Ron sind gut durchlässig und auch speicherfähig. Bei Starkregen werden sie erst nach sehr ergiebigen Niederschlägen gesättigt (Oberflächenabfluss aufgrund sich langsam sättigender Flächen, SOF3; stark verzögerter Abfluss im Boden, SSF3). Solche Flächen tragen daher stark verzögert und nur mässig zum Hochwasser bei (Abflusstyp 4, 43.7 %). Im günstigen Fall sickert das Niederschlagswasser in den durchlässigen Untergrund (z.B. Hasliwald: Tiefensickerung, DP, Abflusstyp 5, 2.4 %).

Die Abflussreaktion der natürlichen Flächen der Ron wird aufgrund der kartierten Abflusstypen als schwach beurteilt. Ein wesentlicher Grund dafür sind die speicherfähigen und gut durchlässigen Böden im EZG.

Dominate Abflussprozesse, Gebietseigenschaften und Abflusstypen im EZG der Ron Tab. 4.1:

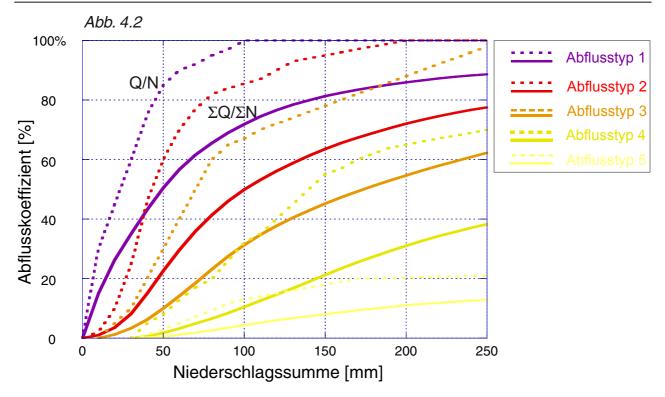
Abfluss-	Abfluss- Abflussreaktion	Dominante Abflussprozesse	Massgebende Gebietseigenschaften	Flächenanteil	anteil
typ				am EZG	48
•				(km ²)	(%)
~	Rasch und stark beitragende Flächen	Oberflächenabfluss aufgrund von Infiltrationshemmissen (HOF1)	Schwach durchlässige Böden mit Gefälle, verrutschte Gerinneflanken.	0.08	0.4
)	Sofortiger gesättigter Oberflächen- Feuchtflächen abfluss (SOF1)	Feuchtflächen	I	
2	Leicht verzögert bei- tragende Flächen	Leicht verzögerter Oberflächenab- fluss aufgrund von Infiltrations- hemmnissen (HOF2)	Schwach durchlässige Böden mit geringem Gefälle.	1.50	8.6
		Leicht verzögerter Oberflächenab- fluss aufgrund sich langsam sätti- gender Flächen (SOF2)	Vernässte Böden im Bereich von Quellmulden, Moore an geneigter Lage.		
		Rascher Abfluss im Boden (SSF1)	Flachgründige, gut durchlässige Böden mit lateralen Fliesswegen über schwach durchlässigem Fels mit grossem Gefälle, drainierte Flächen in Hanglage.		
က	Verzögert beitragen- de Flächen	Verzögert beitragen- Verzögerter Oberflächenabfluss de Flächen aufgrund sehr langsam sich sättigender Böden (SOF2 - SOF3)	Mässig tiefgründige Böden mit mässiger bis guter Durchlässigkeit, locker bebaute Siedlungsflächen. Nasse Flächen in ebener Lage.	3.37	19.4
		Verzögerter Abfluss im Boden (SSF2)	Mässig tiefgründige, gut durchlässige Böden mit lateralen Fliesswegen über Fels oder Moräne, Flächen in Gerinnenähe, drainierte Böden in flacher Lage.		
4	Stark verzögert bei- tragende Flächen	Sehr stark verzögerter Oberflä- chenabfluss aufgrund sehr langsam sich sättigender Böden (SOF3)	Tiefgründige Böden mit guter Durchlässigkeit.	7.61	43.7
		Stark verzögerter Abfluss im Boden (SSF3)	Stark verzögerter Abfluss im Boden Tiefgründige, gut durchlässige Böden mit lateralen Fliesswegen. (SSF3)	I	
2	Sehr stark verzögert beitragende Flächen	Tiefensickerung (DP)	Tiefgründige gut durchlässige Böden oder flachgründige, gut durchlässige Böden auf durchlässiger Geologie (Moräne, Schotter).	0.42	2.4
		Sehr stark verzögerter Abfluss im Boden (SSF3)	Tiefgründige, gut durchlässige Böden mit lateralen Fliesswegen, gerinnefern.		
Total				12.98	74.6

4.5 Abflussreaktion der Siedlungsgebiete

Da die überbauten Flächen im EZG mit 25.4% einen wesentlichen Anteil ausmachen, wurden die hochwasserrelevanten Flächen im Siedlungsgebiet gesondert kartiert. Die Beurteilung basiert auf den Erfahrungen der Glattstudie (IHW / Scherrer AG, 2002; Naef et al., 2004). Wichtige Kriterien waren dabei die Bebauungsdichte und die Geländeneigung. Die Siedlungsflächen wurden in drei verschiedene Abflusstypen mit unterschiedlicher Abflussreaktion unterteilt (Tab. 4.2), welche ebenfalls als Grundlage für die Abflussberechnungen mit dem Niederschlag-Abfluss-Modell QAREA dienen.

In Gebieten, die einem grossen Siedlungsdruck ausgesetzt sind, stellt sich die Frage, wie sich die Hochwasserabflüsse mit zunehmender Überbauung verändern. Eine Studie in einem vergleichbaren EZG (Scherrer AG, 2009) zeigt, dass sich die Hochwasserabflüsse durch eine Vergrösserung der Siedlungsfläche von 20 % auf 24 % nur um wenige Prozente erhöhen.

	· ·	3 1		
Abflusstyp	Abflussreaktion	Massgebende Gebietseigenschaften	Fläche	nanteil
			(km²)	(%)
S1	rasch und stark beitragend	sehr dicht bebaute Flächen leicht geneigte, dicht bebaute Flächen stark geneigte, mässig dicht bebaute Flächen	0.18	1.0
S2	leicht verzögert beitragend	ebene, dicht bebaute Flächen leicht geneigte, mässig dicht bebaute Flächen geneigte, locker bebaute Flächen	0.95	5.4
S3	verzögert beitragend	geneigte, locker bebaute Flächen leicht geneigte, mässig dicht bebaute Flächen	3.31	19.0
Total			4.43	25.4


Tab. 4.2: Klassierung der Siedlungsflächen nach Abflusstypen

4.6 Abflussreaktionskurven

Abbildungen 4.2 und 4.3 zeigen die Abflussreaktionskurven für natürliche Flächen und Siedlungsgebiete. Auf der Grundlage von Beregnungsversuchen (Scherrer, 1997) wurden den fünf Abflusstypen der natürlichen Flächen je eine Abflussreaktionskurve zugeordnet. Die Kurven beschreiben den Anteil des abfliessenden Niederschlags in Abhängigkeit der Niederschlagsmenge. Eingetragen sind die Spitzen- und die Volumenabflusskoeffizienten. Letztere zeigen, dass von den flächenmässig dominierenden Abflusstypen 3 und 4 der natürlichen Flächen (19.4 % resp. 43.7 % des EZG) bei einem Niederschlag von 100 mm rund 30 % resp. 10 % abfliesst.

Für die Herleitung von Abflussreaktionskurven für natürliche Flächen besteht eine grosse Erfahrung aus zahlreichen Studien. Vergleichbare Erfahrungen für besiedelte Flächen existieren hingegen weniger. Die Abflussreaktionskurven der Siedlungsgebiete beruhen im Wesentlichen auf Erkenntnissen, die im Rahmen der Glattstudie gewonnen wurden (IHW / Scherrer AG, 2002). Demnach fliessen vom Siedlungs-Abflusstyp S1 (1.0 % des EZG) bei einem Niederschlag von 100 mm rund 85 % ab, bei S2 (5.4 % des EZG) 42 % und S3 (19.0 % des EZG) 20 %.

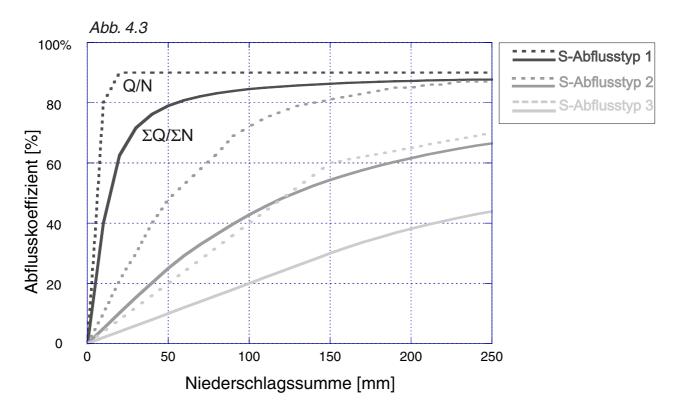


Abb. 4.2, 4.3: Die Abflussreaktionskurven für natürliche Flächen (Abb. 4.2) und für Siedlungsflächen (Abb. 4.3). Sie definieren den Anteil des abfliessenden Niederschlags in Abhängigkeit der Niederschlagssumme. Eingetragen ist der Spitzenabflusskoeffizient (Q/N, strichliert) und der Volumenabflusskoeffizient (ΣQ/ΣN, ausgezogene Linie).

5 Abflussberechnungen

5.1 Einleitung

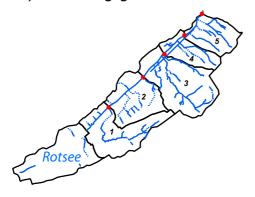
Das hier eingesetzte Niederschlag-Abfluss-Modell (NAM) QArea wurde am Institut für Hydromechanik und Wasserwirtschaft der ETH Zürich entwickelt und erfasst die bei der Hochwasserentstehung beteiligten Abflussprozesse. Dieses Modell ist ein Hilfsmittel, das erlaubt, das Abflussverhalten des EZG auf verschiedene Starkniederschläge rechnerisch zu simulieren und die Reaktion auf seltene meteorologische Bedingungen (Niederschlags-Szenarien) abzuschätzen.

5.2 Grundlagen und Aufbau des Modells QAREA

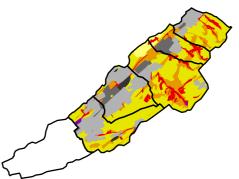
Die Abbildung 5.1 zeigt die Grundlagen des NAM QAREA. Das Modell wurde den Verhältnissen entsprechend für die Ron erstellt.

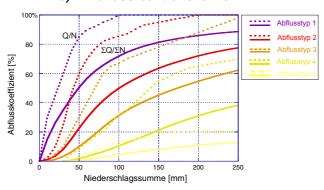
Zusammenfassend die wichtigsten Grundlagen und Eigenschaften des Modells QAREA:

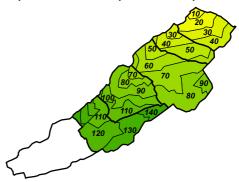
- Das NAM berechnet Abflüsse aus verschiedenen TEZG resp. für verschiedene Bemessungspunkte (Abb. 5.1a).
- Das NAM basiert auf der Klassifizierung der Abflussbereitschaft der Teileinzugsgebietsflächen (Abflusstypen, Abb. 5.1b) und den dazugehörenden Abflussreaktionen (Abflussreaktionskurven, Abb. 5.1c, Kap. 4.6).
- Die Fliesszeiten bis zum Teileinzugsgebietsausgang (Isochronen) und die Fliesszeiten in den Gerinnen wurden berücksichtigt (Abb. 5.1d).
- Niederschläge: Zur Simulation von Landregen aber auch kurzen Gewitterniederschlägen kann das Gebiet gleichmässig überregnet werden oder auch nur Teile davon (Abb. 5.1e).

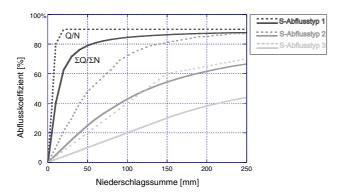

Ein Schema des eingesetzten Modells ist im Anhang 5 zu finden. Der gefallene Niederschlag wird aufgeteilt in Direktabfluss und in den Boden infiltrierendes Wasser. Das infiltrierte Wasser wird im Boden gespeichert und verzögert wieder abgegeben. Die Reaktion dieser Bodenspeicher wird mit linearen Speichern modelliert. Für jeden Abflusstypen wird eine eigene Speichercharakteristik angenommen. Der Direktabfluss erfährt auf dem Weg ins Gerinne eine Verzögerung durch Retention (Oberflächenspeicher), welche ebenfalls mit einem linearen Speicher simuliert wird.

Um die Wasserqualität des früher stark belasteten Rotsees zu verbessern, wird ihm seit 1922 durch einen Stollen Reusswasser zugeleitet. Dadurch hat sich die mittlere Wasserzufuhr zum Rotsee und damit auch die Abflussmenge der Ron am Seeauslauf von ursprünglich ca. 40 l/s auf etwa 400 l/s erhöht (creato, 1999). Der Ausfluss des Rotsees ist reguliert und beträgt maximal 3 m³/s (VAW 1992). Im NAM wird deshalb der Seeausfluss als Input-Ganglinie mit einem konstanten Abfluss von 3 m³/s berücksichtigt.


Das geplante Hochwasserrückhaltebecken (HWRB) beim BP 4 (Planergemeinschaft HWS Rontal 2009) wurde mit einer vereinfachten Charakteristik im Modell eingebaut. Bei Bedarf kann mit einer konstanten Drosselwassermenge gerechnet werden.


a) Teileinzugsgebiete


b) Abflusstypen



c) Abflussreaktionskurven

d) Fliesszeiten (Isochronen)

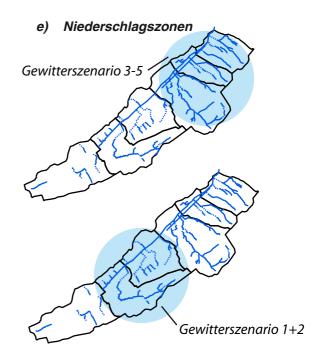


Abb. 5.1: Die Grundlagen des Niederschlag-Abfluss-Modells QAREA:

- a) Die Teileinzugsgebiete mit den Berechnungspunkten,
- b) die Abflusstypen,
- c) die Abflussreaktionskurven,
- d) die Fliesszeiten in Minuten (Isochronen),
- e) die Niederschlagszonen.

5.3 Eichung des Modells

Für die Modelleichung wurden die abgeschätzten Hochwasser vom 21./22. August 2005 (Anhang 6.1), vom 8. August 2007 (Anhang 6.2) und vom 8. August 2009 (Anhang 6.3) nachgerechnet. Bei diesen Hochwasserereignissen waren folgende Voraussetzungen für eine Modelleichung gegeben:

- Es waren Niederschlagsereignisse, welche die ganze Region betrafen, wobei das Hochwasser 2009 durch ein Gewitter ausgelöst wurde. Es wurden die zeitlichen Niederschlagsverteilungen der hoch aufgelöst messenden kantonalen Stationen Emmen und Root für den Niederschlagsinput verwendet.
- Aufgrund der vorliegenden Daten der umliegenden Tagessammler konnte die räumliche Niederschlagsverteilung mittels Interpolation abgeschätzt und für den Niederschlagsinput verwendet werden (Anhang 3).

Die Abflussspitzen der Hochwasser 2005 und 2007 konnten befriedigend nachgerechnet werden. Über den Verlauf der Hochwasser und die Abflussvolumina konnten allerdings keine detaillierten Beobachtungen in Erfahrung gebracht werden. Die beobachtete Abflussspitze des Hochwassers 2009 konnte nur mit dem Niederschlagsverlauf der Station Root nachgerechnet werden (Anhang 6.3b). Die Station Emmen registrierte eine viel geringere Niederschlagsintensität (Anhang 6.3a). Insgesamt ergibt das Modell plausible Ergebnisse und kann für die Abflussberechnungen (Kap. 5.5) eingesetzt werden.

5.4 Niederschlag-Szenarien

5.4.1 Räumliche Niederschlagsverteilungen

Niederschläge haben eine zeitliche (Dauer und Intensität des Niederschlags) und eine räumliche Verteilung (Überregnung des Gebiets). Bei langandauernden Niederschlagsereignissen (> 4 h Dauer) wurde für die Herleitung der Szenarien angenommen, dass das ganze 17.4 km² grosse EZG gleichmässig überregnet wird.

Die Zentren von Konvektionszellen, in denen die Niederschlagsmaxima von kurzen Starkniederschlägen (≤ 4 h Dauer) fallen, sind auf wenige km² begrenzt. Daher wurden zwei massgebende Gewitterszenarien für die Niederschläge mit einer Dauer von vier Stunden oder weniger festgelegt (Abb. 5.1e):

- Gewitterszenario 1+2: Die Teileinzugsgebiete (TEZG) 1 und 2 werden voll, die übrigen (nicht voll beregneten) TEZG mit halbierten Niederschlagsintensitäten überregnet.
- Gewitterszenario 3-5: Die Teileinzugsgebiete (TEZG) 3, 4 und 5 werden voll, die übrigen (nicht voll beregneten) TEZG mit 36 % der Niederschlagsintensitäten überregnet².

5.4.2 Zeitliche Niederschlagsverteilung und Niederschlagsintensitäten

Südwestlich des EZG der Ron liegt die Regenmessstation Luzern der MeteoSchweiz. Von den Regenmessstationen, die über eine statistische Auswertung verfügen, liegt Luzern dem EZG der Ron am nächsten (Zeller et al. 1978). In der Niederschlagsstatistik von Zeller et al. (1978) wurden die Jahre 1881 – 1977 ausgewertet. Seit den 1990er-Jahren gab es eine Häufung von extremen Starkregen, welche in dieser Statistik nicht berücksichtigt sind. Daher wurden die

² Beim Gewitterszenario 1+2 werden die nicht voll beregneten TEZG zu 50 % beregnet, beim Gewitterszenario 3-5 zu 36 %. So ist gewährleistet, dass trotz unterschiedlicher Grösse des überregneten Haupt-Niederschlagsgebiets bei beiden Szenarien gleich viel Niederschlag auf das gesamte EZG fällt.

Daten aus Jahrbüchern und digitalen Daten der MeteoSchweiz (Messreihe von 1881 – 2010) zusammengetragen und statistisch analog zu Zeller et al. (1978) ausgewertet (Anhang 7)³.

Bei kurzen Niederschlägen bis 4 h Dauer wurde eine zeitliche Dreiecksverteilung angenommen mit der Niederschlagsspitze nach einem Drittel der Niederschlagsdauer. Für die 12 h-, 24 h- und 48 h-Niederschläge wurde eine gleichmässige zeitliche Verteilung (Blockregen) verwendet. Tabelle 5.1 zeigt die für die Modellrechnungen verwendeten Werte:

Tab. 5.1: Die für die Modellrechnungen verwendeten Niederschlagswerte (Luzern 1881 - 2010).

Bezeichnung	Niederschlags-	Wiederkehr-	Zeitliche	Niederschlags-	Max. Nieder-
des Nieder-	dauer [h]	periode	Verteilung des	menge	schlags-intensität
schlags		[Jahre]	Niederschlags	[mm]	[mm/h]
0.5h30j_dreieck	0.5	30	Dreieck	46.2	138.6
1h30j_dreieck	1	30	Dreieck	53.3	93.3
2h30j_dreieck	2	30	Dreieck	61.5	57.7
4h30j_dreieck	4	30	Dreieck	71.0	34.4
12h30j_block	12	30	Blockregen	89.1	7.4
24h30j_block	24	30	Blockregen	102.9	4.3
48h30j_block	48	30	Blockregen	119.0	2.5
0.5h100j_dreieck	0.5	100	Dreieck	57.4	172.3
1h100j_dreieck	1	100	Dreieck	65.6	114.8
2h100j_dreieck	2	100	Dreieck	74.9	70.2
4h100j_dreieck	4	100	Dreieck	85.6	41.4
12h100j_block	12	100	Blockregen	105.6	8.8
24h100j_block	24	100	Blockregen	120.6	5.0
48h100j_block	48	100	Blockregen	138.4	2.9
0.5h300j_dreieck	0.5	300	Dreieck	67.8	203.4
1h300j_dreieck	1	300	Dreieck	76.9	134.5
2h300j_dreieck	2	300	Dreieck	87.2	81.7
4h300j_dreieck	4	300	Dreieck	98.8	47.9
12h300j_block	12	300	Blockregen	120.6	10.1
24h300j_block	24	300	Blockregen	136.7	5.7
48h300j_block	48	300	Blockregen	156.0	3.3

³ Die neuen statistischen Werte der Station Luzern sind gegenüber Zeller et al. (1978) für den 100-jährlichen 1-Tageswert ca. 5 % höher.

5.5 Abflussberechnungen

Die Analyse der Hochwasserereignisse vom August 2005 (Anhang 6.1) und August 2007 (Anhang 6.2) zeigte, dass in den 1.5 Tagen vor den das Hochwasser auslösenden intensiven Niederschlägen bereits jeweils etwa 70 mm Regen im voraus fielen, die das Abflussverhalten des EZG beeinflussten. Deshalb wurden für die Berechnung der langen 12 h-, 24 h- und 48 h-Niederschläge mit einem Vorregen von 70 mm gerechnet⁴.

Tabelle 5.2 zeigt die Resultate der Modellrechnungen. Der Ausfluss des Rotsees wurde als Input mit einem konstanten Abfluss von 3 m³/s berücksichtigt (vgl. Kap. 5.2). Die Berechnungen zeigen, dass bei einer Wiederkehrperiode von 100 und 300 Jahren Gewitter die grössten Abflussspitzen beim BP 1 und BP 2 erzeugen. Unterhalb davon verursachen Dauerregen von 12 Stunden Dauer mit Abstand die grössten Abflussspitzen an der Ron. Die Resultate der Abflussberechnungen stehen damit im Einklang mit den Beobachtungen historischer Hochwasser. (vgl. Kap. 3.3).

Tab. 5.2: Die Resultate der Berechnungen mit dem NAM QAREA

Wiederkehr- periode	Bezeichnung des Niederschlags	Nieder- schlags-sze-		sspitzen Ingspun		bei de	en Be-
[Jahre]		nario	BP 1	BP 2	BP 3	BP 4	BP 5
	0.5h30j_dreieck	Gewitter1+2	7.4	11.2	11.8	12.2	12.4
	1h30j_dreieck	Gewitter1+2	7.7	11.8	12.6	13.0	13.2
	2h30j_dreieck	Gewitter1+2	7.9	12.5	13.4	13.9	14.2
	4h30j_dreieck	Gewitter1+2	7.6	12.2	13.4	13.9	14.4
	0.5h30j_dreieck	Gewitter3-5	3.6	4.3	9.9	11.8	13.3
30	1h30j_dreieck	Gewitter3-5	3.6	4.4	10.5	12.7	14.5
	2h30j_dreieck	Gewitter3-5	3.6	4.5	11.1	13.7	15.9
	4h30j_dreieck	Gewitter3-5	3.6	4.4	11.0	13.7	16.3
	12h30j_block	gleichmässig	8.6	13.5	20.9	23.6	26.9
	24h30j_block	gleichmässig	6.5	9.6	14.2	16.0	18.1
	48h30j_block	gleichmässig	5.2	7.2	10.1	11.2	12.5
	0.5h100j_dreieck	Gewitter1+2	10.2	15.8	16.8	17.3	17.6
	1h100j_dreieck	Gewitter1+2	10.6	16.8	18.0	18.5	18.9
	2h100j_dreieck	Gewitter1+2	10.6	17.4	18.8	19.4	19.9
	4h100j_dreieck	Gewitter1+2	9.8	16.4	18.3	19.1	19.7
	0.5h100j_dreieck	Gewitter3-5	3.8	4.8	14.3	17.4	20.0
100	1h100j_dreieck	Gewitter3-5	3.9	4.9	15.3	18.6	21.6
	2h100j_dreieck	Gewitter3-5	3.9	5.0	15.6	19.5	23.0
	4h100j_dreieck	Gewitter3-5	3.8	4.9	14.7	18.7	22.6
	12h100j_block	gleichmässig	10.0	16.0	25.1	28.5	32.6
	24h100j_block	gleichmässig	7.3	11.1	16.7	18.9	21.5
	48h100j_block	gleichmässig	5.7	8.0	11.5	12.8	14.4
	0.5h300j_dreieck	Gewitter1+2	13.4	21.1	22.5	23.1	23.5
	1h300j_dreieck	Gewitter1+2	13.7	22.1	23.8	24.5	25.0
	2h300j_dreieck	Gewitter1+2	13.5	22.5	24.6	25.5	26.1
	4h300j_dreieck	Gewitter1+2	12.2	20.8	23.5	24.5	25.4
	0.5h300j_dreieck	Gewitter3-5	4.1	5.3	19.4	23.7	27.7
300	1h300j_dreieck	Gewitter3-5	4.1	5.5	20.2	24.9	29.2
	2h300j_dreieck	Gewitter3-5	4.1	5.5	20.4	25.6	30.5
	4h300j_dreieck	Gewitter3-5	4.0	5.4	18.7	23.8	29.2
	12h300j_block	gleichmässig	11.2	18.3	29.1	33.0	37.9
	24h300j_block	gleichmässig	8.0	12.4	18.9	21.3	24.3
	48h300j_block	gleichmässig	6.0	8.7	12.7	14.1	16.0

⁴ Heftige Gewitter fallen in der Regel eher auf trockene Vorbedingungen, weshalb bei den kurzen Niederschlägen bis 4 h Dauer kein Vorregen berücksichtigt wird.

6 Hochwasserabflüsse definierter Jährlichkeit

6.1 Einleitung

Um die massgebenden Hochwassermengen festzulegen, wurden im Sinne einer Synthese die Erkenntnisse aus den historischen Hochwassern und die Resultate der Modellrechnungen in einem Frequenzdiagramm zueinander in Beziehung gesetzt. Dies liefert ein Gesamtbild und zeigt den Unsicherheitsbereich der Hochwasserabschätzung auf. Bei der Festlegung der massgebenden Abflüsse verspricht dieses Vorgehen eine grössere Verlässlichkeit.

6.2 Ron in Ebikon zwischen den BP 1 und BP 2

Die Erkundung der historischen Hochwasser (Kap. 3) öffnet einen grossen Beobachtungszeitraum von 100 Jahren (graue Rechtecke in Abb. 6.1):

- Die Hochwasser vom **21./22.8.2005** und **8.8.2007** sind die grössten seit den Hochwassern vom 14./15.6.1910 und 13.6.1912. Über die vergangenen 100 Jahre betrachtet liegen sie daher auf den Rängen 1 bis 4 (25- bis 100-jährliches Hochwasser). In Ebikon (zwischen BP 1 und BP 2) wurden für beide Hochwasser eine Abflussspitze von 10 15 m³/s abgeschätzt.
- Das Hochwasser vom 21.8.1992 mit einer Abflussspitze von 10 12 m³/s wird über die vergangenen 100 Jahre betrachtet auf den Rängen 3 bis 9 (11- bis 33-jährliches Hochwasser) eingeordnet.
- Das kleine Hochwasser vom 8.8.2009 mit einer Abflussspitze von 6 7 m³/s liegt über die vergangenen 100 Jahre etwa auf Rang 17 (5- bis 6-jährliches Hochwasser).

Die Berechnungen mit den Modellregen erweitern die Erkenntnisse aus den historischen Hochwassern und sind in Abbildung 6.1 violett dargestellt. Sie ermöglichen die Abschätzung seltener Hochwasser.

Die blauen (für den BP 1) und roten (BP 2) Linien markieren den Unsicherheitsbereich für die vorgeschlagenen Hochwasserabflüsse bestimmter Jährlichkeit. Ein HQ_{100} liegt beim BP 1 demnach im Bereich von 10 - 12 m³/s, beim BP 2 bei 17 - 19 m³/s.

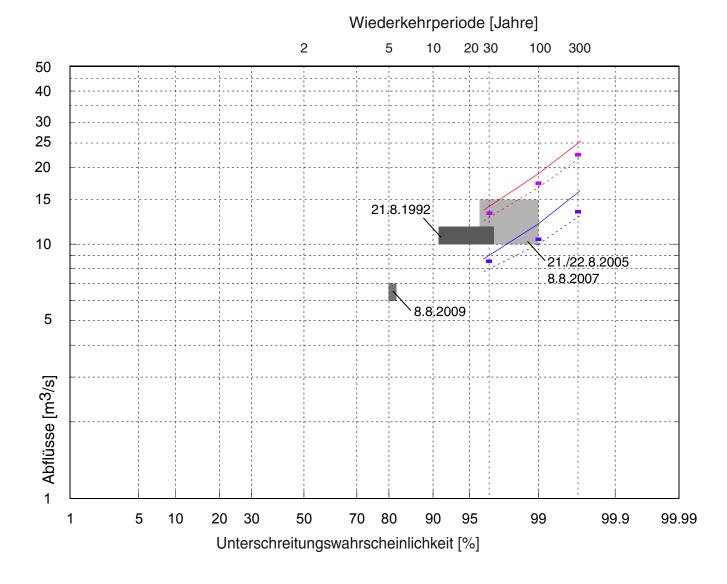


Abb. 6.1: Frequenzdiagramm der Ron in Ebikon zwischen BP 1 (4.1 km² ohne Rotsee) und BP 2 (7.6 km² ohne Rotsee). Eingetragen sind die für Ebikon abgeschätzten Hochwasser vom 21.8.1992, 21./22.8.2005, 8.8.2007 sowie 8.8.2009 (graue Rechtecke). Die Resultate der Berechnungen mit Modellregen sind violett (BP 1) resp. rosa (BP 2) dargestellt. Die blauen (BP 1) resp. roten (BP 2) Linien markieren die vorgeschlagenen Hochwasserabflüsse bestimmter Jährlichkeit.

6.3 Hochwasserabflüsse

Unter Berücksichtigung der Modellrechnungen konnten die Hochwasserabflüsse bestimmter Jährlichkeit für die übrigen Berechnungspunkte in analoger Weise festgelegt werden (Tabelle 6.1).

Während die 30- und 100-jährlichen Hochwasserabflüsse innerhalb des überblickbaren Zeitfensters von 100 Jahren liegen, ist die Festlegung der 300-jährlichen Hochwasserabflüsse eine unsichere Extrapolation. Die mit dem NAM errechneten Hochwasserabflüsse mit einer Wiederkehrperiode von 300 Jahren würden an der Ron ausufern und zu einer breiten Seenbildung führen. Das Dämpfungsverhalten hängt dabei stark vom Abflussvolumen bei einem HQ₃₀₀ ab.

Tab. 6.1: Die an der Ron ermittelten Hochwasserabflüsse bestimmter Jährlichkeit

ВР	zugeordneter Gerinneabschnitt	HQ ₃₀ [m³/s]	HQ ₁₀₀ [m³/s]	HQ ₃₀₀ [m³/s]
	Ausfluss Rotsee (4.5 km²)	3	3	3
1	Ron nach Einmündung Mühlebach (4.1 km²)	8 - 9	10 - 12	13 - 16
2	Ron nach Einmündung Grenzbach (7.6 km²)	13 - 14	17 - 19	22 - 25
3	Ron nach Einmündung Götzentalbach (13.0 km²)	20 - 22	25 - 28	28 - 32
4	Ron nach Einmündung Bäumlibach (15.0 km²)	23 - 24	28 - 31	32 - 37
5	Ron vor Mündung in Reuss (17.4 km²)	26 - 28	32 - 36	37 - 42

6.4 Vergleich mit früheren Untersuchungen

Die bei der Vorstudie Gesamtkonzept Rontal (Planergemeinschaft HWS Rontal 2008) erarbeiteten Hochwasserabflüsse bestimmter Jährlichkeit wurden für die Gefahrenkarte (AF-Colenco AG / Keller + Lorenz AG 2010) neu ermittelt und liegen auch dem Gesamtkonzept Rontal zu Grunde (Planergemeinschaft HWS Rontal 2009; Kap. 3.2.2). Die Hochwasserabflüsse der Gefahrenkarte (AF-Colenco AG / Keller + Lorenz AG 2010) liegen beim HQ₁₀₀ um 40 - 70 % höher als die in dieser Studie vorgeschlagenen Werte und basieren auf einfachen Hochwasserabschätzverfahren, welche die in der Vergangenheit beobachteten Hochwasser nicht berücksichtigen und den spezifischen Eigenschaften des Ron-EZG offenbar nicht gerecht werden. Die von der VAW (1992) ermittelten Hochwasserabflüsse werden durch die in dieser Studie vorgeschlagenen Werte bestätigt.

Tab. 6.2: Vergleich der an der Ron ermittelten Hochwasserabflüsse bestimmter Jährlichkeit mit früheren Untersuchungen.

		Scherrer AG	AF- Colenco / Keller + Lorenz (2010)	Planer- gemein- schaft HWS Rontal (2008)	Scherrer AG	VAW (1992)	AF- Colenco / Keller + Lorenz (2010)	Planer- gemein- schaft HWS Rontal (2008)	Scherrer AG	AF- Colenco / Keller + Lorenz (2010)	Planer- gemein- schaft HWS Rontal (2008)
	zugeordneter Gerinneab- schnitt	HQ ₃₀ [m³/s]	HQ ₃₀ [m³/s]	HQ ₃₀ [m³/s]	HQ ₁₀₀ [m³/s]	HQ ₁₀₀ [m³/s]	HQ ₁₀₀ [m³/s]	HQ ₁₀₀ [m³/s]	HQ ₃₀₀ [m ³ /s]	HQ ₃₀₀ [m ³ /s]	HQ ₃₀₀ [m ³ /s]
	Ausfluss Rot- see	3	3	5.5 - 6.0	3	3	3	6.4 - 6.8	3	3	7.0 - 7.5
	Ron n. Einm. Mühlebach	8 - 9	13.5		10 - 12	7 - 13	16.5		13 - 16	18.7	
2	Ron n. Einm. Grenzbach	13 - 14	21.2		17 - 19		26.5		22 - 25	30.2	
3	Ron n. Einm. Götzentalbach	20 - 22	30.5		25 - 28		38.5		28 - 32	44.6	
1	Ron n. Einm. Bäumlibach	23 - 24	37.2		28 - 31		47.5		32 - 37	54.9	
1	Ron vor Mün- dung in Reuss	26 - 28	44	32.0 - 38.0	32 - 36	26 - 37	56	41.7 - 49.7	37 - 42	65	48.5 - 56.5

7 Hochwasserrückhalt als Schutz für Root

Gemäss Planergemeinschaft HWS Rontal (2009) ist beim BP 4 oberhalb von Root ein HWRB geplant. Die dabei zu Grunde gelegte Hydrologie rechnet an dieser Stelle mit einem HQ₁₀₀ von 47.5 m³/s, welches durch das geplante HWRB auf 33 m³/s gedämpft werden soll. In dieser Studie wurden an dieser Stelle (ohne HWRB) 28 - 31 m³/s ermittelt (Tab. 6.2). Ein HWRB ist demnach nicht notwendig.

Basierend auf den Berechnungen mit dem NAM wurde dennoch das Dämpfungspotential eines HWRB oberhalb von Root (Rückhaltevolumen: 75'000 m³) abgeschätzt (Anhang 8). Dabei zeigt sich, das für das massgebende Niederschlagsszenario (vgl. Kap. 5.5, 100-jährlicher 12-h-Blockregen) der Abfluss lediglich um ca. 5 m³/s gedämpft werden kann. Ein angemessener Hochwasserschutz für Root kann mit einem Gerinneausbau der Ron wahrscheinlich effizienter erreicht werden.

Scherrer AG Hydrologie und Hochwasserschutz

Dr. S. Scherrer

R. Frauchiger

Reinach, August 2011

Sachbearbeiter:

Roger Frauchiger, Dipl. Kult. Ing. ETH Zürich

Dr. Simon Scherrer, Dipl. Geograph Uni Basel

8 Anhang

Anhang 1: Historische Hochwasser

Anhang 2: Tagesniederschläge

Anhang 3: Räumliche Niederschlagsverteilungen

Anhang 4: Bodenprofile

Anhang 5: Modellaufbau

Anhang 6: Modellverifikation

Anhang 7: Niederschlagsstatistik Luzern (1881-2010)

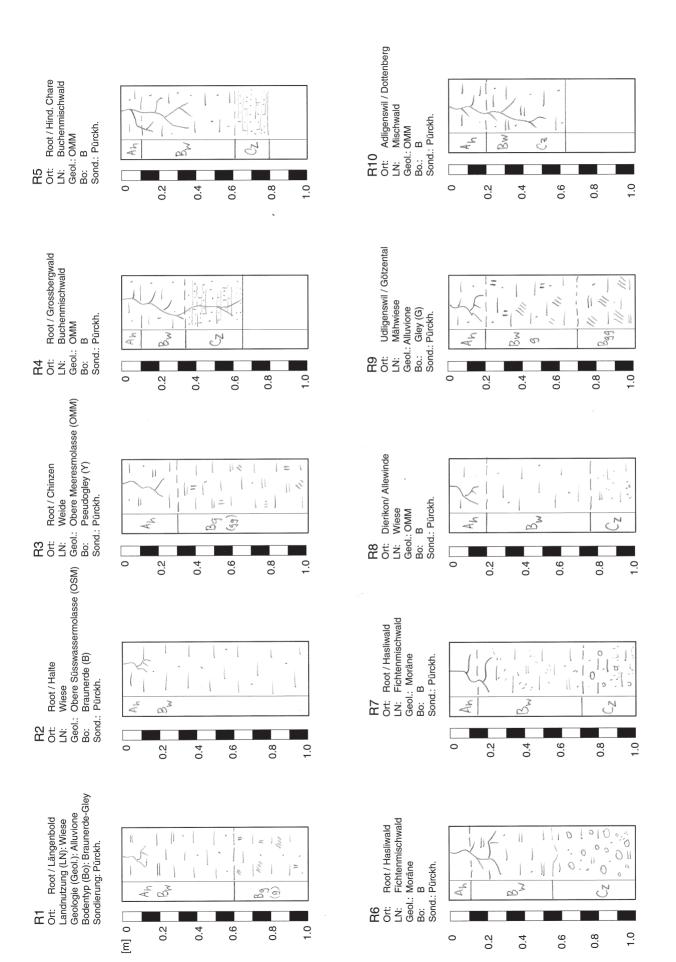
Anhang 8: Beckenberechnungen

Datum	Niederschlag	Angaben zum Ereignis	Quelle
1910, 14./15.6.	Dauerregen	LNN vom 14.6.1910: "Gebiet zwischen Gisikon und Ebikon (wurde) in einen See verwandelt." Botschaft des Regierungsrates des Kantons Luzern an den grossen Rat betreffend Subventionierung der Arbeiten für die Korrektion der Ron in den Gemeinden Ebikon, Dierikon, Buchrain und Root: "Die Hochwasser von 1910 und 1912 hatten die Häuser im Unterdorfe Root gefährdet und durchflutet."	VAW (1992)
		Root. Auch hier richtet das Unwetter gewaltige Verheerungen an. Das Unterdorf Root, Perlen zum Teil und der Schachen bei der Reuss befinden sich völlig unter Wasser, und noch regnet es in Strömen. Viele Häuser werden geräumt, und es müssen, um das Verlassen zu ermöglichen, Brücken geschlagen werden. (Eine Mitteilung aus Buchrain bestätigt dies; beigefügt wird, dass die Gegend zwischen Inwil und der Reuss in einen See verwandelt sei.	Luzerner Tagblatt, 16.6.1910
		Nicht so gefährlich sieht es in Root selber aus. Abgesehen von einem Schlipf am Berge, ist nur die Gegend bei der Einmündung des Rohnbaches in Mitleidenschaft gezogen. Diesem, der schon von Ebikon weg grosse Wasserlachen bildet, ist hier der Einfluss in die Reuss verwehrt, und die Fluten wogen zurück und bilden einen See.	Luzerner Tagblatt, 17.6.1910
		In Root wurde die Feuerwehr aufgeboten. Das Vieh musste aus einigen Ställen im Unterdorf und Gisikon ins Freie gebracht werden. Einen so hohen Wasserstand hat man hier noch nie erlebt.	Vaterland, 17.6.1910
1912, 13.6.	Dauerregen	Botschaft des Regierungsrates des Kantons Luzern an den grossen Rat betreffend Subventionierung der Arbeiten für die Korrektion der Ron in den Gemeinden Ebikon, Dierikon, Buchrain und Root: "Die Hochwasser von 1910 und 1912 hatten die Häuser im Unterdorfe Root gefährdet und durchflutet."	VAW (1992)
1927, 2.8.	Gewitter	2. August. Das Unwetter, das am Nachmittag von Montreux über Thun, Langnau (Kanton Bern), Ruswil, Neuenkirch, Rothenburg, Eschenbach, Inwil und über die zugerische Gemeinde Risch bis nach Zürich zog, richtete im Kanton Luzern gewaltige Schäden an. Besonders der Hagel, daneben aber auch der Sturm und die wolkenbruchartigen Regengüsse führten zu ungewohnten Zerstörungen an Kulturen und Gebäuden, ja selbst an Fahrnis sowie an Wegen und Strassen. Ungefähr 4000 Besitzer kamen zu Schaden. Am schwersten betroffen wurden die Ämter Hochdorf und Luzern, während das Entlebuch nur geringere Schäden notierte und das Amt Willisau diesmal von der Katastrophe verschont blieb. Gesamtschaden Ebikon: Fr. 362'357, Buchrain: Fr. 184'482, Dierikon: 85'495, Root: 256'263	Lanz-Stauffer & Rom- mel (1936)
1944, 24.8.	Gewitter	LNN und NZZ vom 25.8.44: Bahn zwischen Ebikon und Luzern unterbrochen. LNN vom 26.8.44: Erdschlipfe am Rotseeweg (nicht im Einzugsgebiet der Ron!) verursachen SBB-Unterbruch.	VAW (1992)

Datum	Niederschlag	Angaben zum Ereignis	Quelle
1953, 25 30.6.	Gewitter, Dauerregen	LNN vom 1.7.53: "In Ebikon wurde ein ausserordentlich heftiges Gewitter registriert, das jedoch keine eigentliche Wassernot verursachte. Hingegen muss der Blitz hier mehrmals eingeschlagen haben" LNN vom 2.7.53: "Am Dienstag arbeiteten die Leute den ganzen Tag auf dem Roter Sportplatz, galt es doch das überschwemmte Gebiet zu entwässern, was mit Hilfe einer Pumpe gelang. Auch die Vorbereitungen für das Kreisturnfest mussten getroffen werden. Doch plötzlich brach die Flut von neuem los. Die neu erstellte Bühne musste abgebrochen und das herbeigeführte Holz in Sicherheit gebracht werden. Am Abend mass man auf dem Sportplatz schon wieder einen Wasserstand von 40 cm." Dies ist das einzige Ereignis von dem in Root Überschwemmungen bekannt sind. Nach den Jahrbüchern der meteorologischen Zentralanstalt betrug die Niederschlagsmenge am 25. und 26.6.1953 über der Innerschweiz zwischen 80 bis 110 mm. Am 30. Juni ereignete sich im Raume Luzern ein Gewitter, dabei wurden in Luzern 33 mm Niederschlag gemessen. Die Reuss wies in Root bei diesem Ereignis vermutlich den höchsten Wasserstand der Messperiode auf. () Zeugenaussagen festigen die Ansicht, dass die Überschwemmungen in Root bei diesem Ereignis in der Hauptsache durch den Rückstau aus der Reuss verursacht wurden.	VAW (1992)
1973, 22.6.	Dauerregen	Buchrain: Perlenbrücke [Reuss]: Überschwemmungen, Perlenbrücke gesperrt.	WSL (2011)
1975, 23.8.	Dauerregen	In den Gemeinden Ebikon, Dierikon und Root. Bachausbrüche und Überschwemmungen. Im Götzental (Dierikon) Erdrutsche und WSL (2011) Bachausbrüche; Seenbildung und unterbrochene Strassen. Ausbruch des Mühlebaches in Ebikon.	WSL (2011)
1976, 26.7.	Dauerregen	Ebikon: Strasse unter Wasser, Hochwasser Mühlebach.	WSL (2011)
1977, 30.5.	Gewitter	Namenloses Grenzbächlein zwischen Stadt Luzern und Ebikon trat über die Ufer; Keller und Gärten überflutet. Überschwemmungen kommen hier mit grosser Regelmässigkeit vor. Grund: Kompetenzschwierigkeiten der beiden Gemeinden (Einzugsgebiet des Baches liegt auf Stadtgebiet - hier wurden keine Massnahmen getroffen), überschwemmt wird aber Gebiet der Gemeinde Ebikon. Anmerkung Datum: Ende Mai 1977.	WSL (2011)
1978, 7.8.	Dauerregen	In Ebikon Wasserschäden (überschwemmte Keller, Strassen). Anmerkung: im Gebiet auch Bachausbrüche und Ausbrüche der Reuss.	WSL (2011)
		Schlimm sah es zeitweise auch im Kanton Luzern aus: Weggis war vorübergehend von der Umwelt abgeschnitten, zwischen Buchrain und Inwil lagen bis zu 50 Zentimeter Wasser auf der Strasse (der Rotbach war über die Ufer getreten), in Ebikon mussten Keller ausgepumpt und in Horw mussten verschiedene Zelte abgeräumt werden.	Luzerner Tagblatt, 9.8.1978
1981, 17.7.	Gewitter	In Ebikon überschwemmte Keller.	WSL (2011)
1984, 10.8.	Gewitter, Dauerregen	Buchrain: Überschwemmungen (im Bereich der Reuss?). Perlen: Überschwemmung, Ausbruch der Reuss.	WSL (2011)

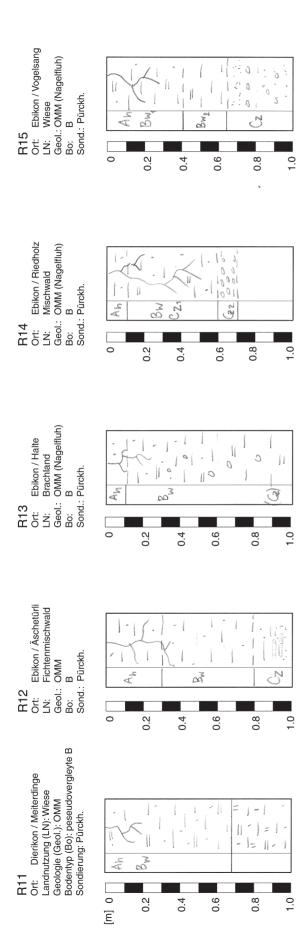
Datum	Niederschlag	Angaben zum Ereignis	Quelle
1988, 16./17.6.		Rontaler vom 23.6.88: Artikel mit Photographien: "Sintflutartige Regenfälle über dem Rontal." Mühlebach überschwemmte die SBB-Linie. Am 16./17.6.88 gab es Überschwemmungen auf Gemeindegebiet [Buchrain] zwischen der Ron und der SBB-Linie. Betroffen war nur landwirtschaftlich genutztes Land und kein Gebäude. Aus den Zeugenaussagen und den schriftlichen Aufzeichnungen lässt sich ableiten, dass das Ereignis des Jahres 1988 zumindest im oberen Teil des Einzugsgebietes als grosses, eventuell als grösstes Hochwasserereignis der letzten 70 Jahre eingeordnet werden kann. Aus mündlichen Aussagen ist bekannt, dass der Mühlebach in Ebikon den Bachdurchlass beim Restaurant Sonne knapp überströmte. Zu Überschwemmungen kam es beim Durchlass des Mühlebaches unter der SBB-Linie. Der Ronbach selber trat laut Zeugenaussagen nicht über die Ufer. An einigen Stellen füllte der Abfluss das Kanalprofil. Ebikon: Keller, Strassen und Autos überschwemmt. Anmerkung: Bahnhof in Mitleidenschaft gezogen. Unwetter mit Schwerpunkt	VAW (1992) WSL (2011)
		Willisau (Luzerner Hinterland) und Stadt Luzern. 1 Toter und enormer Sachschaden, zahlreiche Bahn- und Strassenunterbrüche; total 2500 Feuerwehrleute im Einsatz.	
1990, 30.8.	Gewitter	Überschwemmte Keller und Strassen, aber keine grossen Schäden. Betroffene Orte: im Kanton LU Ebikon, Adligenswil, Udligenswil, Emmen, Eschenbach; im Kanton SZ: Küsnacht, Merlischachen.	WSL (2011)
1992, 21.7.	Gewitter	Ebikon: Überschwemmte Keller und Strassen.	WSL (2011)
1992, 21.8.	Gewitter	Am 21. Aug. 1992 wurde die Innerschweiz von äusserst heftigen Gewittern mit intensiven Niederschlägen, Hagelschlag und starken Windböen heimgesucht. () Der Durchlass des Mühlebaches beim Restaurant Sonne wurde spätestens 25 Min. nach Beginn des Niederschlages überströmt, wobei die Wassertiefe über dem Durchlass ca. 10-15 cm betrug. 40 Minuten nach Beginn des Regens ging der Wasserstand markant zurück. Der Mühlebach wurde beim Durchlass unter der SBB eingestaut und verursachte an dieser Stelle die bekannten Überschwemmungen. Im Keller des Lagergebäudes von Herrn Burri wurde der markierte Höchstwasserstand aus dem Jahre 1988 um weniges überschritten. Der Geleiseschotter der SBB-Linie wurde von Wasser durchströmt, wasserstand aus dem Jahre 1988 um weniges überschritten. Der Geleiseschotter der SBB-Linie wurde von Wasser durchströmt, der Verkehr wurde jedoch nicht unterbrochen, die Züge fuhren im Schrittlempo über diese Stelle. Bei der Werkleitungsbrücke über der Nerkehr wurde jedoch nicht unterbrochen, die Züge fuhren im Schrittlempo über der Diterkante der Werkleitungsbrücke über ten Einzugsgebiet führten die Seitenbäche Hochwasser. Im untersten Teil der Ron bei Root wurden keine Überschwemmungen durch die Ron beobachtet. Mehr als eine Stunde nach Beginn des Ereignisses war in der Ron noch kein Hochwasserabfluss zu bemerken. 1.5 h nach Beginn des Niederschlages floss das Wasser ca. 50 cm unter dem Kanalrand. () maximaler Abfluss der Ron bei Root von 15-20m³/s ()	VAW (1992)
		Buchrain: Überschwemmungen. Hagelfront längs der Linie Romoos-Wolhusen-Malters-Luzern-Inwil-Adligenswil.	WSL (2011)
1993, 5.7.	Gewitter	Root: Überschwemmungen.	WSL (2011)
1994, 10.8.	Gewitter	Buchrain, Root: Keller und Strassen überschwemmt; Feuerwehreinsätze.	WSL (2011)

Datum	Niederschlag	Angaben zum Ereignis	Quelle
1996, 2.8.	Gewitter	Überschwemmungen in Ebikon und Root.	WSL (2011)
13.5.	Dauerregen	Unwetter in der Gemeinde Root an Auffahrt, massive Überschwemmungen: Die Feuerwehr von Root war am Auffahrtsdonnerstag (13. Mai) ab 4 Uhr morgens im Einsatz. Dabei mussten sie unter anderem (ca.) 12 überflutete Keller auspumpen. Die Scheune eines Bauern stand zeitweise 0.5 m unter Wasser. In der Folge wurde einem Nachbarn Jauche in den Keller geschwemmt. Gleich drei Bäche traten in Root über die Ulfer (Bäumilibach, Morgenrotbach und Chlausbach). Verursacht wurden die Austrerungen durch Äste und Baumstrunke, welche die Durchlässe der Rohre verstopften, durch die die Bäche unter der Strasse kanalisiert werden. Solche Überflutungen sind in Root selten. Andere Meldung: An der Luzemerstrasse war der Wilbach (neben dem Morgenrotbach verstopft. Dadurch ergossen sich grosse Mengen Schutt auf die Hauptstrasse. Laut Angaben der Kantonspolizei musste am Auffahrtsdonnerstag (13. Mai) früh morgens die Hauptstrasse 4 in Root für den Durchgangsverkehr gesperrt werden. Sie wurde durch Schlamm und Geröll verschüttet (infolge der erwähnten Bachausuferungen, siehe oben). Gemäss den obigen Ausführungen ist zu erwarten, dass die Hauptstrasse an verschiedenen Orten verschütterüberte Warde. Die Strasse kernen 2000 m3 Erde ins Rutschen und wurden vom Bäumilbach ins Tal geschwemmt. Evil. trug dies ebenfalls zu den erwähnten Ausuferungen bei. Bei der Fussgängerunterführung Längenbold erreichte das aufgestaute Wasser eine Höhe von 4 m und damit beinahe das Niveau der SBB-Geleise. Diese sowie die Unterführung Mühliweg wurden vorübergehen Morgen (rund 12 Std.) gesperrt werden. Am 15. Mai konnten nach einigen kleineren Einsätzen und Überwachungsarbeiten die Teter Feuerwehrleute um 14 Uhr entlassen werden. In der Schadenzusammenstellung der Unwetter im Mai 1999 des Kantons Luzern wurde folgende Kostenstellen aufgeführt: In der Schadenzusammenstellung der Unwetter im Mai 1999 des Kantons Luzern wurde folgende Kostenstellen aufgeführt; en werden.	WSL (2011)
2002, 16.6.	Gewitter	In der Gemeinde Ebikon gab es wegen des Gewitters zahlreiche Gebäudeschäden.	WSL (2011)
2002, 16.7.	Dauerregen	Dierikon: Bei einem Unwetter im Sommer wurde der Nebenlauf des Götzentalbaches bei der Rigistrasse stark beschädigt. Eine Sanierung wurde notwendig. Annahme: Die Schäden entstanden beim Unwetter vom 15./16. Juli.	WSL (2011)
2005, 20.8.	Dauerregen	Dierikon: 5 Überschwemmungen: Ausuferungen von Bächen (alles Götzentalbach?), verstopfte Durchlässe; 11 Gebäude betroffen WSL (2011) (1 Wohnhaus, 10 "Gebäude"?); Fussballfeld überflutet, Untergeschoss des Schulhauses überflutet; 1 Weiher aufgefüllt und Staumauer beschädigt; eine Hauptstrasse kurze Zeit gesperrt, einmal nur überflutet; Götzentalstrasse gesperrt; Ablagerungen im Land (Holz, Steine, Schlamm), 10 m³ Schwemmholz. 1 Murgang (Oberdierikon): Brücke und Böschungen beschädigt	WSL (2011)


Datum	Niederschlag	Angaben zum Ereignis Quelle
21./22.8.	Dauerregen	Hochwasser: Reuss: Wegspülung des Bodens bis 2 m tief; Überschwemmung mit Ablagerung von Sand und Schlamm, auch im Wall bis 1 m; bei der Far (Reuss Kanal?) 80 Personen evakuiert bzw. in Buchtain-Perlein und im Far 80–>100 Menschen evakuiert bzw. in Buchtain-Perlein und im Far 80–>100 Menschen evakuiert bzw. in Buchtain-Perlein und im Far 80–>100 Menschen evakuiert bzw. in Reus in Keller der Papierfabrik (31 age Produktionsaufall) (Reuss und Fabrikkanal); 1 Holzschopf betroffer; 200 m Damm Lastorist in Keller der Papierfabrik (31 age Produktionsaufall) (Reuss und Fabrikkanal); 1 Holzschopf betroffer; 200 m Damm Lastoristen Gesperit (Buchtain - Inwill). Haupstrasse Ebikon - Buchtain gesperit; 1 Keuss im Forskreis 1 und 2. 96h/300mm 45 Wohnhäuser; 10 Gew./Ind.gebäude, 10 LiV-Gebäude, 5 dif. Geb./Infrastruktu beschädigt - 5 Giskon, Rout und Buchtain (E.). In Ebikon 50 Keller ausgepumpt, entlang der Ron etwa die Hälte des Familiengartenareals übersart. In versch. Betrieben entlang der Ron standen die UGs bis 0.4m unter Wasser. A14 zwischen Gisikon und Rotsee gesperit. Haupstrasses Ebikon - Buchtain gesperit ber weiter abgeschafter werden, weil Reusswasser in der Wasserssersung hosses (Verurreinigder Ron standen die UGs bis 0.4m unter Wasser. A14 zwischen Gisikon und Rotsee gesperit. Haupstrasses betrachten Beschäufer werden, weil Reusswasser in der Wassersersbalden an Häusen beiter stansse gesperit ber Stansse gesperit Beschäufer in Geschieber (Erste gesperit. Beschäufer in Geschieber). Schälen weiter Reusserstlistes Schung beschädigt. Baumbestand geschädigt. 5 Gebäude beschädigt. Sägewerk Schliligier 1 Worh auszer Berlein Reussung der Ronnten stanser Berleine Reussungen. Reussung der Ronnten führtet. Wasser auf Oberwiller Rasser Parkleine Reuss. Verklausung geborsten, vir Geschieber werschälligten beiter Schäden nur G. Reiten, Stälen und Ersten Werkstatu Walter Portmann stand unter Wasser Parklein stälen und Geschieber auch der Berlein Stälen und Geschieber der Schäden nur G. Reiten Stälen und Geschieber in Ed. Rei
		an verschiederien stellen enhang der Non und ber Sehengewasser. Dannt könnte inn strasse (Ebikon, Buchrain) eine Abflussspitze von 10 - 15 m³/s abgeschätzt werden.
2006, 21.6.	Gewitter	Nach einem heftigen Gewitterregen ist in Gisikon am frühen Abend der Chlausbach über die Ufer getreten. Dabei floss das Was- ser teilweise über die Strassen ab. Die Feuerwehr kam zwar zum Einsatz, überflutete Keller oder sonstige Schäden gab es aber keine.

Datum	Niederschlag	Angaben zum Ereignis Quelle	
2007, 21.7.	Gewitter	Ebikon: Zum 3. Mal innert 3 Tagen haben am Abend des 21.7.07 Gewitter in der Schweiz Erdrutsche und Überschwemmungen verursacht. Besonders betroffen waren diesmal die Kantone Bern und Luzern. Im Berner Oberland, Emmental und Entlebuch fielen zw. 30 und 65 I Wasser pro m². Im Kanton Luzern waren laut Schätzungen der Kantonspolizei 30 Haushalte vom Unwetter tangiert. Eine Fahrbahn der Autobahn A2 Richtung Norden musste gesperrt werden, weil ein Erdrutsch vor dem Rathausentunnel niederging.	011)
2007, 8.8.	Dauerregen	Anhaltender Regen hat in der Schweiz Flüsse über die Ufer treten lassen, Keller geflutet und Strassen überschwemmt. Der Kanton Luzern rief am Abend des 8.8.07 den Kantonalen Krisenstab zusammen. Mehr als 1500 Feuerwehrleute standen in der Nacht im ganzen Kanton im Einsatz. Am Mittag des 9.8.07 konnte der Krisenstab wieder Entwarnung geben. Die Gebäudeversicherung rechnete kurz nach dem Ereignis mit 600-800 Schadenfällen und einer Schadensumme von 6 - 8 Mio. Fr. Am stärksten betroffen waren die Gemeinde Littau und das Seetal. Die Feuerwehr hatte am 8. und 9.8.07 Einsätze wegen dem Unwetter. In Dierikon trat der Spechtenbach über die Ufer.)11)
		Die Ron trat in Gebieten Neuhalten, "a de Ron" und Moos über die Ufer. Der Charenbach (Grenzbach Dierikon / Root) brachte viel AF Colenco AG, P Schwemmholz. Oberhalb beim Durchlass an der Götzentalstrasse trat der Bach über die Ufer. Gebäude scheinen nicht stark betroffen zu sein. Der Durchlass unterhalb der Hauptstrasse war verstopft und Wasser lief über den Parkplatz. Ein Nebengewässer des Charenbachs war ebenfalls verstopft. Austretender Abfluss floss auf die Strasse und z.T. zurück in den Charenbach. In Dierikon oberhalb der Sportplatzes brach infolge Verklausung der Spechtenbach aus und lagerte Geröll und Sand unterhalb ab. Das Wasser lief auf die Tartanbahn und den Sportplatz. Die Wiese unterhalb des Durchlasses wurde stark	AF Colenco AG, Keller + Lorenz AG (2010)
		Fotos zeigen die Hochwasser führende Ron in Ebikon. Damit konnte im Abschnitt zwischen Buchrain- und Kirchbreitestrasse (Ebi- Kt. LU (2011) kon, Buchrain) eine Abflussspitze von 10 - 15 m³/s abgeschätzt werden.	2011)
2009, 26.6.	Gewitter	Im Kanton Luzern kam es am Mittag zu heftigen Regenfällen. Neben Horw, Malters und Schüpfheim waren auch die Gemeinden WSL (2011) Luzern, Kriens, Meggen, Malters, Root, Gisikon, Honau und das Michelsamt (=Gemeinden Beromünster, Schwarzenbach, Richenbach, Richenbach (LU), Neudorf, Pfeffikon, Gunzwil) betroffen.)11)
2009, 8.8.	Gewitter	Starke Regenfälle haben in verschiedenen Teilen der Schweiz zu Überschwemmungen und Verkehrsbehinderungen mit Schäden WSL (2011) von mehreren Mio. CHF geführt. Wegen schwachen Höhenwinden wurden die Regenzellen nicht weitergeblasen sondern entleerten sich lokal. Im Kanton Luzern waren die Gemeinden rund um die Stadt Luzern bzw. östlich von Luzern besonders betroffen. Verschiedene Haupt- und Nebenstrassen waren vorübergehend unpassierbar. Bäche traten über die Ufer und Keller mussten ausgepumpt werden. In der Zentralschweiz fielen zw. 50 und 55 l/m² Regen zwischen 11 und 15 Uhr. Bei der Kantonspolizei Luzern gingen über 120 Notrufe ein. Der Schaden wurde kurz nach dem Ereignis auf 5 - 6 Mio. CHF geschätzt (KGV: 150-200 Schadensfälle). Vor allem die Gemeinde Adligenswil, aber auch Udligenswil, Meggen, Ebikon, Dierikon, Root, Kriens und Malters waren betroffen, wo Keller und Garagen überschwemmt wurden. Der Grenzbach Dierikon - Root hielt die Feuenwehr auf Trab.)11)
		Fotos zeigen die Hochwasser führende Ron in Ebikon und Buchrain am 8.8.2009. Damit konnte im Abschnitt zwischen Buchrain- Kt. LU (2011) und Kirchbreitestrasse (Ebikon, Buchrain) eine Abflussspitze von 6 - 7 m³/s abgeschätzt werden.	2011)

	Linna	Licos	lucos	Lucas	Licon	- Lucar	Luca	
Nr. Station	4380 Küssnacht am	4590 Luzern (Musegg)	4590 Luzern	4590 Luzern (Werkhof)	4590 Luzern	LU 01 Emmen	LU 03 Root	
	Rigi		(Wesemlin)					
Messperiode X	1882-1890; 1899- 676270	1880-1919 665940	1919-1971 666450	1970-1978 666920	1978- 665520	1999- 666800	1999- 672060	5-jährlich 10-jährlich
Υ	215020	211850	212650	210500	209860	215725	218910	20-jährlich
Zeitintervall Statistik	7-7 Uhr 1901-1970	7-7 Uhr 1881-2010	7-7 Uhr 1881-2010	7-7 Uhr 1881-2010	7-7 Uhr 1881-2010	7-7 Uhr keine	7-7 Uhr keine	50-jährlich 100-jährlich
12.06.1910 13.06.1910	3.1 19.7	4.0 10.4						
14.06.1910	84.5	80.5						ĺ
15.06.1910 16.06.1910	23.3 0.0	18.3 0.2						ĺ
1415.06.1910	107.8	98.8						ĺ
1315.06.1910 11.06.1912	127.5 0.0	109.2 0.0				-		ĺ
12.06.1912	3.5	1.4						ĺ
13.06.1912 14.06.1912	95.4 0.0	78.0 0.1						ĺ
1213.06.1912	98.9	79.4						l
01.08.1927 02.08.1927	1.3 15.5		1.8 30.9					
03.08.1927	0.0		0.0					
23.08.1944 24.08.1944	0.0 18.4		0.0 111.0					ĺ
25.08.1944 23.06.1953	0.0 2.1		0.0 3.6					
24.06.1953	30.8		13.3					ĺ
25.06.1953 26.06.1953	42.5 33.3		36.7 34.0					ĺ
27.06.1953	0.3		1.7					ĺ
28.06.1953 29.06.1953	0.0 13.8		0.0 0.6					
30.06.1953	25.8		33.4					
2526.06.1953 2426.06.1953	75.8 106.6		70.7 84.0					ĺ
21.06.1973	0.0		0.0					
22.06.1973 23.06.1973	25.7 93.3		26.5 80.1					
24.06.1973	2.7		4.2					ĺ
2223.06.1973 2224.06.1973	119.0 121.7		106.6 110.8					ĺ
21.08.1975 22.08.1975	3.4 27.2			8.3 24.1				ĺ
23.08.1975	74.2			65.7				ĺ
24.08.1975 2223.08.1975	12.8 101.4			15.4 89.8				
2224.08.1975	114.2			105.2				l
24.07.1976 25.07.1976	0.0 16.2			0.0 15.3				ĺ
26.07.1976	70.4			93.6				ĺ
27.07.1976 2627.07.1976	17.9 88.3			24.3 117.9				ĺ
2527.07.1976 05.08.1978	104.5 0.0			133.2	0.0			
06.08.1978	8.1				7.9			
07.08.1978 08.08.1978	86.9 10.0				106.7 3.8			
0607.08.1978	95.0				114.6			
0608.08.1978 08.08.1984	105.0				118.4 0.1		-	
09.08.1984	25.5				21.2			ĺ
10.08.1984 11.08.1984	81.0 8.3				75.4 5.1			ĺ
0910.08.1984	106.5				96.6			ĺ
0911.08.1984 15.06.1988	114.8 0.0				101.7 0.0			ĺ
16.06.1988	22.7				57.3			ĺ
17.06.1988 20.08.1992	0.0 8.2				13.0		+	ĺ
21.08.1992 22.08.1992	38.0 8.5				28.1 3.0			ĺ
04.07.1993	0.0				0.0			ĺ
05.07.1993 06.07.1993	64.4 0.3				94.4 0.0			
01.08.1996	1.1				0.1			
02.08.1996 03.08.1996	25.2 21.8				63.3 5.1			
10.05.1999	10.2				9.6			
11.05.1999 12.05.1999	36.4 49.0				29.7 47.2			
13.05.1999 14.05.1999	30.0 27.0				30.5 24.7			
1112.05.1999	85.4				76.9			
1113.05.1999 18.08.2005	115.4 0.4				107.4 1.6	0.9	0.3	
19.08.2005	24.4				23.6	25.1	20.2	
20.08.2005 21.08.2005	18.5 101.5				24.5 81.1	45.7 72.7	72.1 71.0	
22.08.2005	28.6				25.9	17.3	18.4	
23.08.2005 2021.08.2005	1.8				0.0 105.6	0.0 118.4	0.0 143.1	1
2122.08.2005	130.1				107.0	90.0	89.4	
1921.08.2005 2022.08.2005	144.4 148.6				129.2 131.5	143.4 135.7	163.3 161.5	
05.08.2007 06.08.2007	0.0				0.0	0.0	0.0 5.8	
07.08.2007	12.5 82.5				0.1 50.7	3.9 62.8	5.8 54.4	
08.08.2007	74.5 4.8				57.0 4.6	71.4 4.1	69.9 3.0	
					0.8	1.3	1.9	ĺ
09.08.2007 10.08.2007	1.9							
09.08.2007 10.08.2007 0708.08.2007	1.9 157.0				107.7 107.8	134.2 138.1	124.3 130.1	
09.08.2007 10.08.2007 0708.08.2007 0608.08.2007 0709.08.2007	1.9 157.0 169.5 161.8				107.8 112.3	138.1 138.3	130.1 127.3	
09.08.2007 10.08.2007 0708.08.2007 0608.08.2007 0709.08.2007 07.08.2009	1.9 157.0 169.5 161.8				107.8 112.3 0.0	138.1 138.3 0.0	130.1 127.3 0.0	
09.08.2007 10.08.2007 0708.08.2007 0608.08.2007 0709.08.2007 07.08.2009 08.08.2009 09.08.2009	1.9 157.0 169.5 161.8 0.2 89.6 1.6				107.8 112.3 0.0 30.6 0.8	138.1 138.3 0.0 32.4 0.0	130.1 127.3 0.0 48.9 0.0	
09.08.2007 10.08.2007 0708.08.2007 0608.08.2007 0709.08.2007 07.08.2009 08.08.2009	1.9 157.0 169.5 161.8 0.2 89.6				107.8 112.3 0.0 30.6	138.1 138.3 0.0 32.4	130.1 127.3 0.0 48.9	


Anhang 2: In der Umgebung des Rontals während grosser Hochwasser gemessene Niederschlagsmengen. 5-jährliche und seltenere Werte sind speziell markiert.

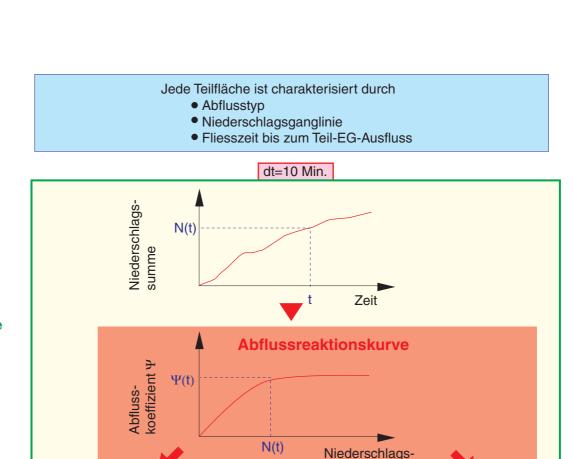
Die im Einzugsgebiet der Ron untersuchten Bodenprofile (R1 - R10) mit der Angabe des Standorts, der Landnutzung, der Geologie, des Bodentyps und der Sondiermethode. Die Legende befindet sich im Anhang 4.2, eine Beschreibung der Profile im Anhang 4.3.

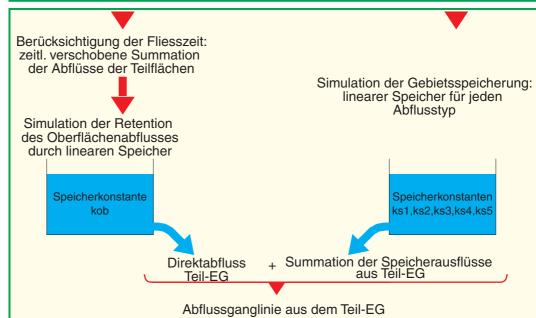
Anhang 4.1a:

Die im Einzugsgebiet der Ron untersuchten Bodenprofile (R11 - R15) mit der Angabe des Standorts, der Landnutzung, der Geologie, des Bodentyps und der Sondiermethode. Die Legende befindet sich im Anhang 4.2, eine Beschreibung der Profile im Anhang 4.3.

Anhang 4.1b:

Bodel	ntypen	Haup	othorizonte
0	Regosol	0	org. Auflagehorizont
F	Fluvisol	T	Torf/hydromorpher org. Horizont
R	Rendzina	Α	organo-mineralischer Oberboden-
Rk	Ranker		horizont
K	Kalkbraunerde	E	Eluvialhorizont
В	Braunerde	1	Illuvialhorizont
T	Parabraunerde	В	Mittelbodenhorizont
Y	Braunerde-Pseudogley	C	Untergrund (Ausgangsmaterial)
1	Pseudogley	R	Felsunterlage
V	Braunerde-Gley		-
W	Buntgley		
G	Fahlgley	Unte	rteilung Haupthorizonte
Α	Aueboden		
Ν	Halbmoor	Zusta	and org. Substanz
Μ	Moor	1	Streuezone
		f	Fermentationszone
		h	Humusstoffzone
Körnı	ung	а	Anmoor
		org	organisches Material im Unterboden
• •	Sand (S), sandig (s)		
			itterungszustand
		ch	chem. vollständig verwittert
_	Silt (U), siltig (u)	W	Verwitterungshorizont
		Z	Zersatz Muttergestein
= =	Ton (T), tonig (t)	Mork	male des Sauerstoffmangels
	10.1. (17), 10.1.1g (17)	m	Marmorierungen
		cn	punktförmige, schwarze Knöllchen
=	Lehm (L), lehmig (I)	(g)	schwache Rostfleckung
_		g	mässige Rostfleckung
		9 99	Horizont mit starker Rostfleckung
:·	Ls	99	infolge periodischer Vernässung
		r	dauernd, vernässter, stark
_		•	reduzierter Horizont
· ·	stark sandiger L (Ls4)		
- 3			
<u></u>	14/2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
-	Wasserspiegel		


Anhang 4.3: Die Eigenschaften der im Anhang 4.1a-b dargestellten Bodenprofile im Einzugsgebiet der Ron mit der Einschätzung von Infiltration und Speicherfähigkeit und Angabe des zu erwartenden dominanten Abflussprozesses


Prozesse: SSF (Subsurface Flow = Abfluss im Boden), SOF (Saturated Overland Flow = gesättigter Oberflächenabfluss), DP (Deep Percolation = Tiefensickerung), SOF1: rasch, SOF2: leicht verzögert, SOF3: stark bis sehr stark verzögert abfliessend). Abkürzungen siehe Anhang 4.2.

Bode	Bodenprofile									
	Profilbeschreibung		Profilbeschreibung							
R1	Root / Längenbold, Alluvione, Wiese Braunerde-Gley (B-G), Pürckhauer (Pürckh.) Ah/Bw: dunkelbrauner Ut Bg (g): beige-grauer Us mit Marmorierungen Infiltrationsvermögen (Inf.): normal Speichervermögen (Spv.): mässig Prozesse (Proz.): SOF2	R2	Root / Halte, OSM, Wiese, Braunerde (B), Pürckh. Ah: dunkelbrauner Us Bw: brauner Us Inf.: normal Spv.: gross Proz.: SSF3							
R3	Root / Chinzen, OMM, Weide, B-Pseudogley (B-Y), Pürckh. Ah: dunkelbrauner Us Bw: braunbeiger Lu Bwg: beige-oranger Us mit Marmorierungen Inf.: normal Spv.: mässig-gross Proz.: SSF3	R4	Root / Grossbergwald, OMM, Buchenmischwald, B , Pürckh. Ah: dunkelbrauner Us Bw: brauner Us Cz: beiger verwitterter Sandstein (Us-Su) Inf.: normal Spv.: mässig-gross Proz.: SSF2							
R5	Root / Hind. Chare, OMM, Buchenmischwald, B, Pürckh. Ah: brauner Us Bw: beiger Us Cz: verwitterter Sandstein Inf.: normal Spv.: mässig Proz.: SSF2	R6	Root / Hasliwald, Moräne, Fichtenmischwald, B, Pürckh. Ah: dunkelbrauner Us Bw: brauner Lu Cz: beiger Ls mit viel Grobsand Inf.: normal Spv.: sehr gross Proz.: DP							
R7	Root / Hasliwald, Moräne, Fichtenmischwald, B , Pürckh. Ah: brauner Us Bw: beiger Ls4 Cz: beiger Us - Su Inf.: normal Spv.: sehr gross Proz.: DP	R8	Dierikon / Allewinde, OMM, Wiese, B, Pürckh. Ah: dunkelbrauner Us Bw: brauner Us Cz: beiger Ls4 Inf.: normal Spv.: mässig - gross Proz.: SSF2-3							
R9	Udligenswil / Götzental, Alluvione, Wiese, G , Pürckh. Ah: brauner Us Bwg: brauner Us mit graubraunen Bereichen Bgg: braun-grauer Lu Inf.: normal - leicht gehemmt Spv.: klein - mässig Proz.: SOF1-2	R10	Adligenswil /Dottenberg, OMM, Mischwald, B , Pürckh. Ah: dunkelbrauner Us Bw: brauner-beiger Lu Inf.: normal Spv.: mässig Proz.: SSF2							
R11	Dierikon / Meiterdinge, OMM, Wiese, pseudovergleyte B, Pürckh. Ah: brauner Lu Bw: brauner Lu Bwg: beiger, teilweiser rötlicher Lu Inf.: normal Spv.: gross Proz.: SOF3	R12	Ebikon / Äschetürli, OMM, Fichtenmischwald, B, Pürckh. Ah: dunkelbrauner Us Bw: beige-brauner Us Inf.: normal Spv.: gross Proz.: SSF3							
R13	Ebikon / Halte, OMM, Brachland, B , Pürckh. Ah: brauner Lu Bw: brauner Lu Cz: beiger Ls Inf.: normal Spv.: gross Proz.: SSF2-3	R14	Ebikon / Riedholz, OMM, Mischwald, B , Pürckh. Ah: dunkelbrauner Us Bw: beiger Lu - Us Inf.: normal Spv.: mässig Proz.: SSF2-3							

	Profilb	eschreibung	
R15	Ebikon	/ Vogelsang, OMM, Wiese, B , Pürckh.	
	Ah:	brauner Lu	
	Bw:	brauner Lu mit Kiesen	
	Cz:	beige-brauner Lu - Ls	
	Inf.:	normal	
	Spv.:	gross - sehr gross	
	Proz.:	SOF3 - DP	

Direktabfluss der Teilfläche i

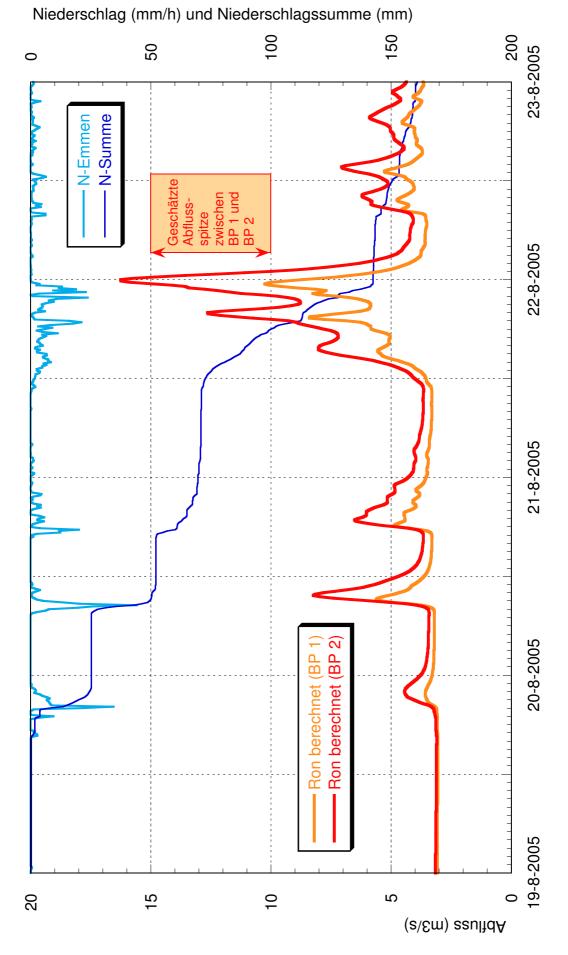
summe

in die Teilfläche i infiltrierendes Wasser

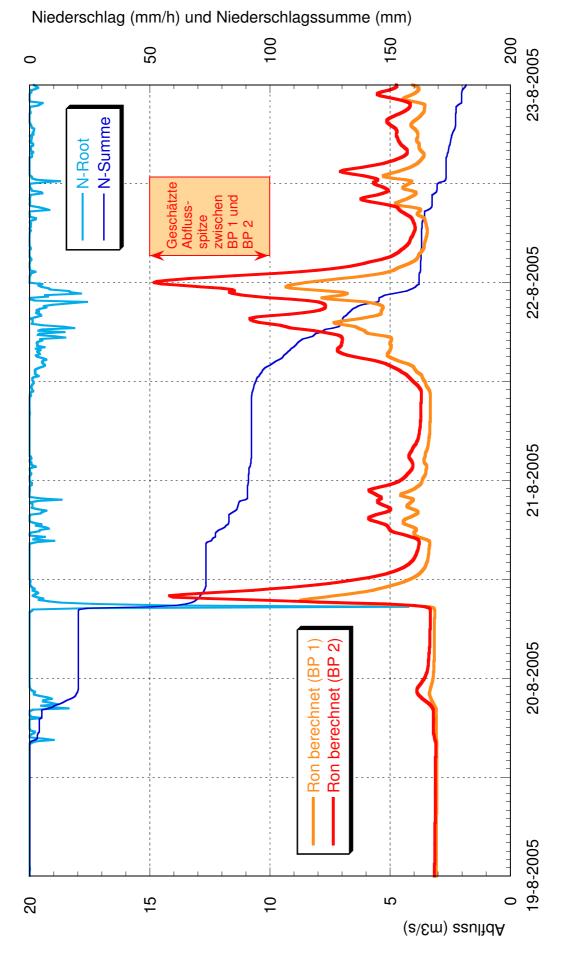
Abflussganglinie aus dem Teil-EG

Aufsummation der Teileinzugsgebiete unter
Berücksichtigung der Fliesszeiten

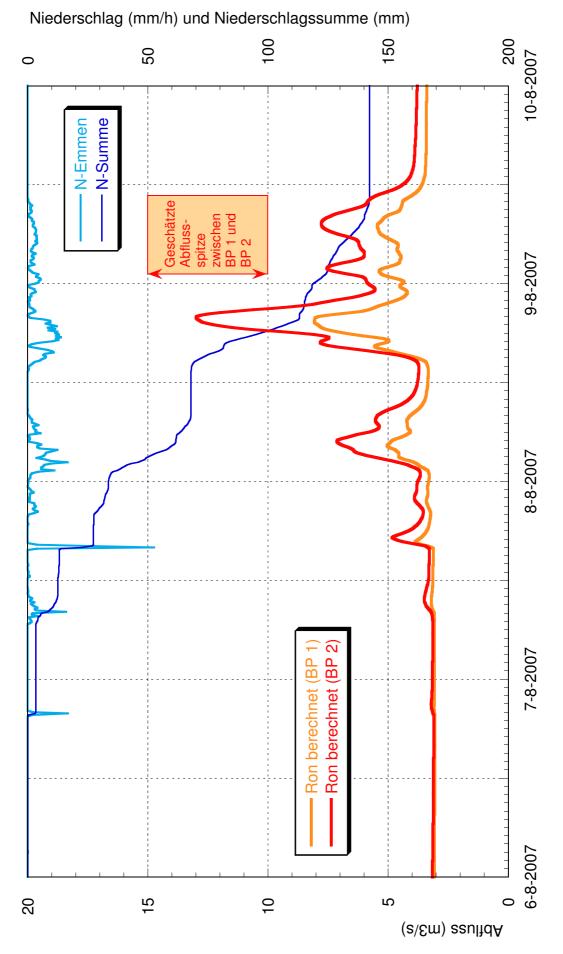
Oggenation der Teileinzugsgebiete unter
Berücksichtigung der Fliesszeiten

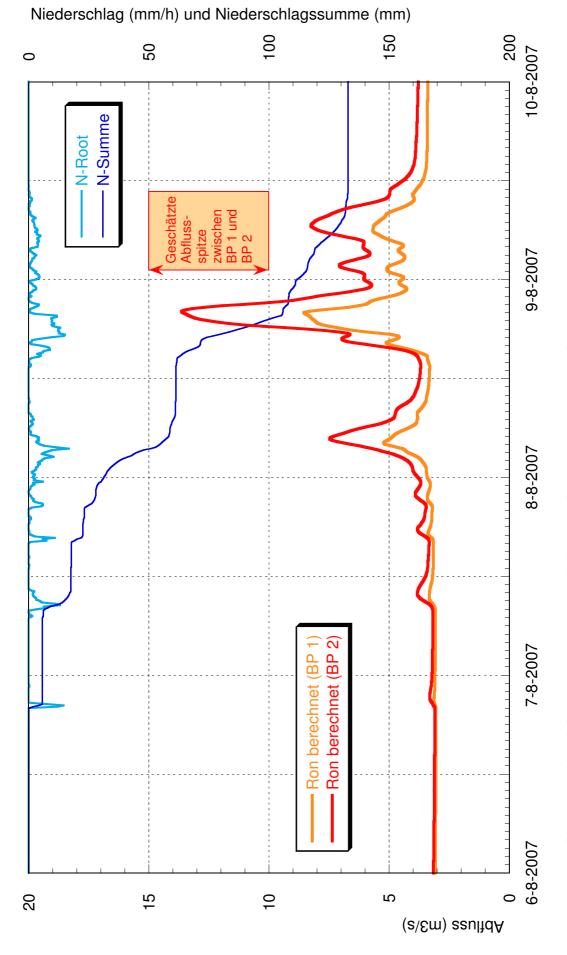

Stufe Teilfläche

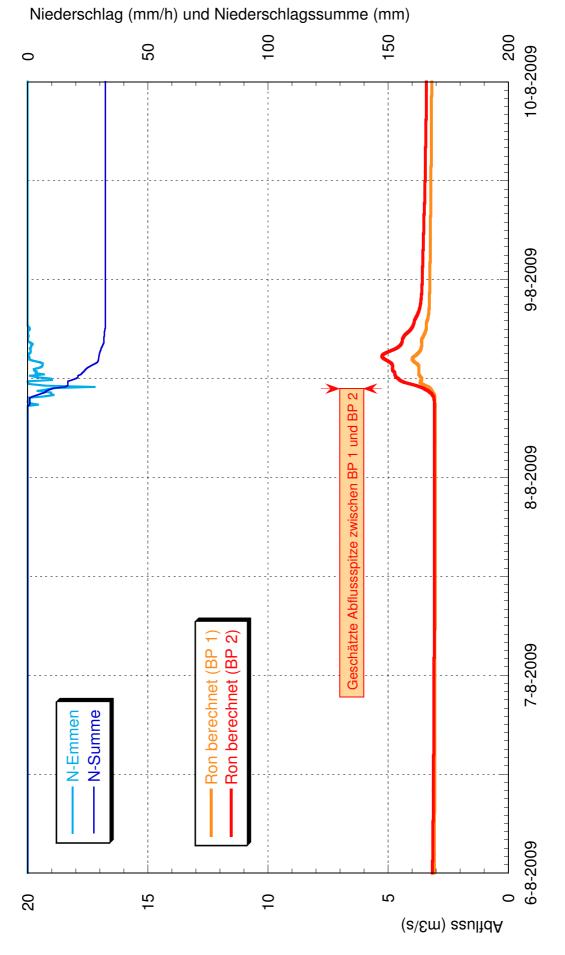
Einzugsgebiet

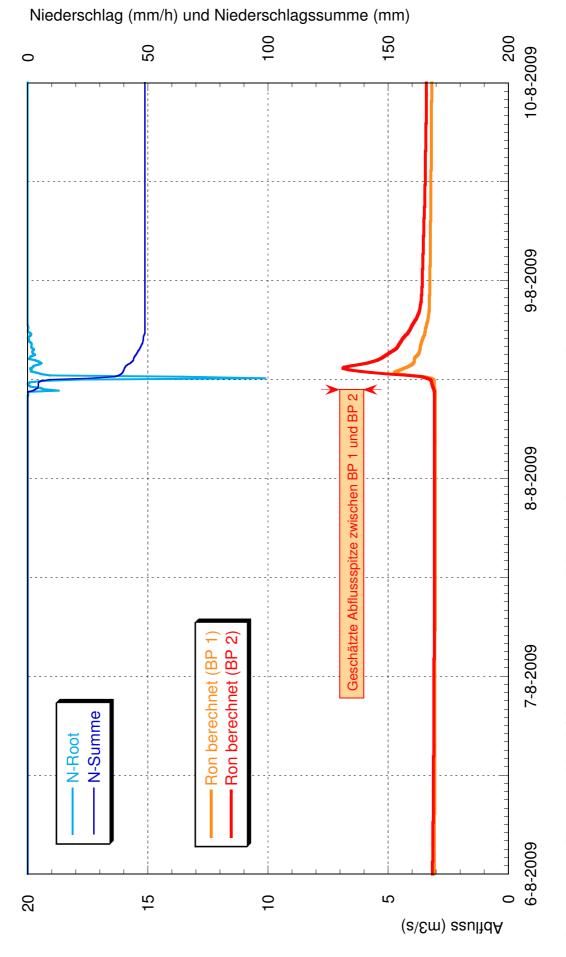

Stufe

Teileinzugsgebiet


Anhang 5: Schematischer Aufbau des Niederschlags-Abfluss-Modells QArea. Zentrales Element ist die Abflussreaktionskurve, die für jede Teilfläche die Beziehung zwischen Niederschlagssumme und Abflusskoeffizient beschreibt.


Anhang 6.1a Die mit dem Modell QArea nachgerechneten Abflüsse der Ron am 21./22.8.2005 an den Berechnungspunkten 1 und 2 im Vergleich mit den Beobachtungen. Es wurde mit dem zeitlichen Niederschlagsverlauf der kantonalen Station Emmen gerechnet.

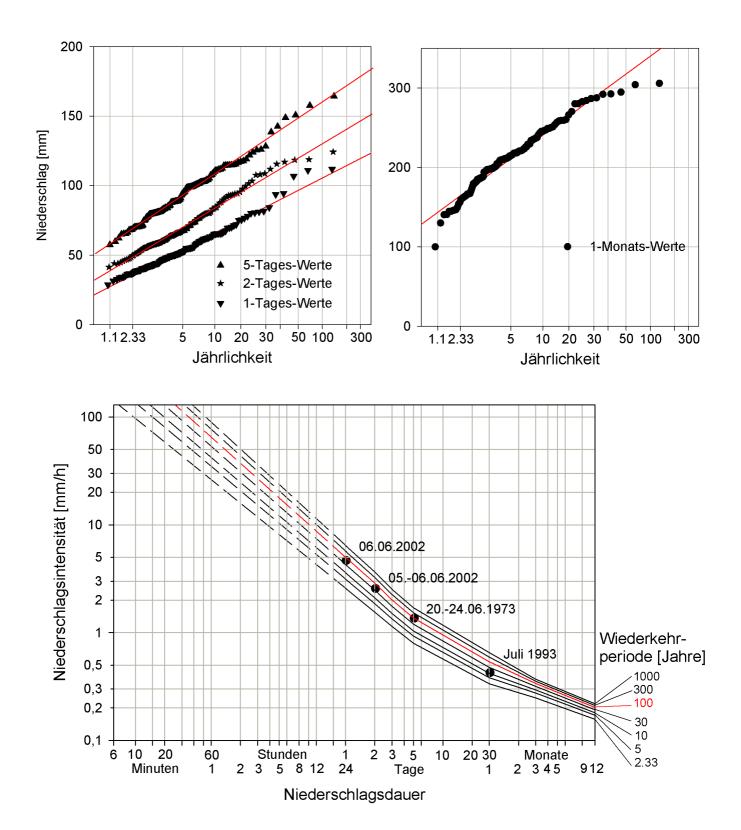

Anhang 6.1b: Die mit dem Modell QArea nachgerechneten Abflüsse der Ron am 21./22.8.2005 an den Berechnungspunkten 1 und 2 im Vergleich mit den Beobachtungen. Es wurde mit dem zeitlichen Niederschlagsverlauf der kantonalen Station Root gerechnet.


Anhang 6.2a: Die mit dem Modell QArea nachgerechneten Abflüsse der Ron am 8.8.2007 an den Berechnungspunkten 1 und 2 im Vergleich mit den Beobachtungen. Es wurde mit dem zeitlichen Niederschlagsverlauf der kantonalen Station Emmen gerechnet.

Anhang 6.2b: Die mit dem Modell QArea nachgerechneten Abflüsse der Ron am 8.8.2007 an den Berechnungspunkten 1 und 2 im Vergleich mit den Beobachtungen. Es wurde mit dem zeitlichen Niederschlagsverlauf der kantonalen Station Root gerechnet.

Anhang 6.3a: Die mit dem Modell QArea nachgerechneten Abflüsse der Ron am 8.8.2009 an den Berechnungspunkten 1 und 2 im Vergleich mit den Beobachtungen. Es wurde mit dem zeitlichen Niederschlagsverlauf der kantonalen Station Emmen gerechnet.

Anhang 6.3b: Die mit dem Modell QArea nachgerechneten Abflüsse der Ron am 8.8.2009 an den Berechnungspunkten 1 und 2 im Vergleich mit den Beobachtungen. Es wurde mit dem zeitlichen Niederschlagsverlauf der kantonalen Station Root gerechnet.



Luzern 1881 - 2010

Regen und Schnee berücksichtigt

- 1. Extremalverteilung: 1-Monats-Maxima
- 1. Extremalverteilung: 1-, 2-, 3- und 5-Tages-Maxima

Normalverteilung: 3-Monats- u. Jahres-Maxima

Anhang 7.1: Die analog zu Zeller et al. (1978) erstellte Starkniederschlagsstatistik für die Station Luzern (1881 - 2010).

Luzern 1881 - 2010

Regen und Schnee berücksichtigt

1. Extremalverteilung: 1-Monats-Maxima

1. Extremalverteilung: 1-, 2-, 3- und 5-Tages-Maxima

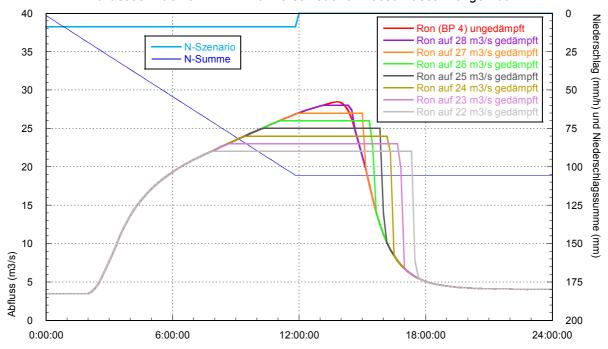
Normalverteilung: 3-Monats- u. Jahres-Maxima

Die für die Diagramme verwendeten 10 grössten Niederschlagswerte

ng	1 - Tag		1 - Tag 2 - Tage		5 - Tage	1 - Mor	nat	3 - Mona	1 - Jahr			
Rai	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]	Datum	N [mm]
1	06.06.2002	112	0506.06.2002	123	20.06-24.06.1973	163	Jul 1993	306	Jul-Sep 1888	675	1910	1666
2	24.08.1944	111	2627.07.1976	118	18.0822.08.2005	157	Jul 1976	304	Jul-Sep 2010	658	1965	1550
3	07.08.1978	107	2122.11.1972	118	22.0726.07.1976	150	Aug 1975	295	Jun-Aug 1997	648	1979	1475
4	05.07.1993	94	2728.09.1954	116	05.0609.06.2002	148	Aug 2005	293	Jun-Aug 1912	643	2001	1472
5	26.07.1976	94	0607.08.1978	115	10.0514.05.1999	142	Aug 1890	292	Jun-Aug 1927	632	1940	1461
6	27.09.1954	84	2324.08.1944	111	06.0610.06.2002	139	Jul 1900	288	Jun-Aug 1910	632	2002	1461
7	22.11.1972	82	0708.08.2007	108	20.1124.11.1972	138	Nov 1972	287	Mai-Jul 1914	629	1999	1449
8	21.08.2005	81	2122.08.2005	107	18.0122.01.1910	127	Jun 1979	284	Jun-Aug 1993	629	1922	1436
9	14.06.1910	81	2223.06.1973	107	26.0930.09.1954	125	Jul 1955	283	Jun-Aug 1946	629	1905	1427
10	23.06.1973	80	2930.07.1900	103	03.0807.08.1978	125	Jun 1912	280	Jun-Aug 2007	628	1995	1426

Interpolierte Niederschlagsintensitäten in mm/h für ausgewählte Jährlichkeiten und Niederschlagsdauern

Niederschlagsdauer	0.5h	1h	2h	4h	6h	8h	12h	24h	2d	3d	5d	1mt	3mt	1yr
Jährlichkeit														
2.33	43,5	26,2	15,8	9,5	7,1	5,7	4,3	2,6	1,5	1,1	0,8	0,34	0,25	0,16
5	58,9	34,8	20,6	12,2	9,0	7,2	5,3	3,1	1,9	1,3	0,9	0,38	0,28	0,17
10	72,0	42,1	24,6	14,4	10,5	8,4	6,1	3,6	2,1	1,5	1,0	0,42	0,29	0,18
20	84,9	49,2	28,5	16,5	12,0	9,6	7,0	4,0	2,3	1,7	1,1	0,46	0,31	0,19
30	92,4	53,3	30,8	17,8	12,9	10,2	7,4	4,3	2,5	1,8	1,2	0,48	0,32	0,19
50	101,9	58,5	33,6	19,3	14,0	11,1	8,0	4,6	2,7	1,9	1,3	0,50	0,33	0,20
100	114,9	65,6	37,5	21,4	15,4	12,2	8,8	5,0	2,9	2,0	1,4	0,54	0,34	0,20
200	127,9	72,7	41,3	23,5	16,9	13,3	9,6	5,5	3,1	2,2	1,5	0,57	0,35	0,21
300	135,6	76,9	43,6	24,7	17,7	14,0	10,1	5,7	3,3	2,3	1,5	0,59	0,35	0,21
500	145,3	82,1	46,4	26,2	18,8	14,8	10,6	6,0	3,4	2,4	1,6	0,62	0,36	0,21
1000	158,5	89,3	50,3	28,3	20,3	16,0	11,4	6,4	3,7	2,5	1,7	0,65	0,37	0,22


Bemerkungen.

durchgehende Daten von 1.8.1880 bis 31.12.2010

Anhang 8.1: Die Resultate der Berechnungen mit dem NAM QAREA mit einem HWRB beim BP 4 und verschiedenen Drosselwassermengen.

Wiederkehr-	Bezeichnung des	Nieder-							
periode	Niederschlags	schlags-	Berech	nungsp		beim BP 4 [m ³]			
[Jahre]	[Jahre]		BP 1	BP 2	BP 3	BP 4	BP 5	BP 4	
	12h100j_block	gleichmässig	10.0	16.0	25.1	28.5	32.6	0	
	12h100j_block	gleichmässig	10.0	16.0	25.1	28.0	32.3	1'100	
	12h100j_block	gleichmässig	10.0	16.0	25.1	27.0	31.3	7'600	
100	12h100j_block	gleichmässig	10.0	16.0	25.1	26.0	30.3	18'200	
	12h100j_block	gleichmässig	10.0	16.0	25.1	25.0	29.3	32'300	
	12h100j_block	gleichmässig	10.0	16.0	25.1	24.0	28.3	49'900	
	12h100j_block	gleichmässig	10.0	16.0	25.1	23.0	27.3	70'500	
	12h100j_block	gleichmässig	10.0	16.0	25.1	22.0	26.3	94'600	

Anhang 8.2: Ganglinien des Modellniederschlags und des mit dem NAM QAREA berechneten Abflusses mit einem HWRB für verschiedene Drosselwassermengen beim BP 4.

